K-FIT: An accelerated kinetic parameterization algorithm using steady-state fluxomic data
- PMID: 32173504
- DOI: 10.1016/j.ymben.2020.03.001
K-FIT: An accelerated kinetic parameterization algorithm using steady-state fluxomic data
Abstract
Kinetic models predict the metabolic flows by directly linking metabolite concentrations and enzyme levels to reaction fluxes. Robust parameterization of organism-level kinetic models that faithfully reproduce the effect of different genetic or environmental perturbations remains an open challenge due to the intractability of existing algorithms. This paper introduces Kinetics-based Fluxomics Integration Tool (K-FIT), a robust kinetic parameterization workflow that leverages a novel decomposition approach to identify steady-state fluxes in response to genetic perturbations followed by a gradient-based update of kinetic parameters until predictions simultaneously agree with the fluxomic data in all perturbed metabolic networks. The applicability of K-FIT to large-scale models is demonstrated by parameterizing an expanded kinetic model for E. coli (307 reactions and 258 metabolites) using fluxomic data from six mutants. The achieved thousand-fold speed-up afforded by K-FIT over meta-heuristic approaches is transformational enabling follow-up robustness of inference analyses and optimal design of experiments to inform metabolic engineering strategies.
Keywords: E. coli; Kinetic models of metabolism; Metabolic engineering; Parameterization.
Copyright © 2020 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Similar articles
-
From Escherichia coli mutant 13C labeling data to a core kinetic model: A kinetic model parameterization pipeline.PLoS Comput Biol. 2019 Sep 10;15(9):e1007319. doi: 10.1371/journal.pcbi.1007319. eCollection 2019 Sep. PLoS Comput Biol. 2019. PMID: 31504032 Free PMC article.
-
KETCHUP: Parameterizing of large-scale kinetic models using multiple datasets with different reference states.Metab Eng. 2024 Mar;82:123-133. doi: 10.1016/j.ymben.2024.02.002. Epub 2024 Feb 7. Metab Eng. 2024. PMID: 38336004
-
A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.Metab Eng. 2014 Sep;25:50-62. doi: 10.1016/j.ymben.2014.05.014. Epub 2014 Jun 10. Metab Eng. 2014. PMID: 24928774
-
Applications of computational modeling in metabolic engineering of yeast.FEMS Yeast Res. 2015 Feb;15(1):1-13. doi: 10.1111/1567-1364.12199. Epub 2015 Jan 14. FEMS Yeast Res. 2015. PMID: 25156867 Review.
-
Channeling in native microbial pathways: Implications and challenges for metabolic engineering.Biotechnol Adv. 2017 Nov 1;35(6):805-814. doi: 10.1016/j.biotechadv.2017.06.004. Epub 2017 Jun 13. Biotechnol Adv. 2017. PMID: 28627424 Review.
Cited by
-
Iterative design of training data to control intricate enzymatic reaction networks.Nat Commun. 2024 Feb 21;15(1):1602. doi: 10.1038/s41467-024-45886-9. Nat Commun. 2024. PMID: 38383500 Free PMC article.
-
BayesianSSA: a Bayesian statistical model based on structural sensitivity analysis for predicting responses to enzyme perturbations in metabolic networks.BMC Bioinformatics. 2024 Sep 10;25(1):297. doi: 10.1186/s12859-024-05921-4. BMC Bioinformatics. 2024. PMID: 39256657 Free PMC article.
-
Metabolic Modelling as a Framework for Metabolomics Data Integration and Analysis.Metabolites. 2020 Jul 24;10(8):303. doi: 10.3390/metabo10080303. Metabolites. 2020. PMID: 32722118 Free PMC article. Review.
-
From Escherichia coli mutant 13C labeling data to a core kinetic model: A kinetic model parameterization pipeline.PLoS Comput Biol. 2019 Sep 10;15(9):e1007319. doi: 10.1371/journal.pcbi.1007319. eCollection 2019 Sep. PLoS Comput Biol. 2019. PMID: 31504032 Free PMC article.
-
Genome Scale Modeling to Study the Metabolic Competition between Cells in the Tumor Microenvironment.Cancers (Basel). 2021 Sep 14;13(18):4609. doi: 10.3390/cancers13184609. Cancers (Basel). 2021. PMID: 34572839 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources