Why the -omic future of Apicomplexa should include gregarines
- PMID: 32176937
- DOI: 10.1111/boc.202000006
Why the -omic future of Apicomplexa should include gregarines
Abstract
Gregarines, a polyphyletic group of apicomplexan parasites infecting mostly non-vertebrates hosts, remains poorly known at taxonomic, phylogenetic and genomic levels. However, it represents an essential group for understanding evolutionary history and adaptive capacities of apicomplexan parasites to the remarkable diversity of their hosts. Because they have a mostly extracellular lifestyle, gregarines have developed other cellular developmental forms and host-parasite interactions, compared with their much better studied apicomplexan cousins, intracellular parasites of vertebrates (Hemosporidia, Coccidia, Cryptosporidia). This review highlights the promises offered by the molecular exploration of gregarines, that have been until now left on the side of the road of the comparative -omic exploration of apicomplexan parasites. Elucidating molecular bases for both their ultrastructural, functional and behavioural similarities and differences, compared with those of the typical apicomplexan models, is expected to provide entirely novel clues on the adaptive capacities developed by Apicomplexa over evolution. A challenge remains to identify which gregarines should be explored in priority, as recent metadata from open and host-associated environments have confirmed how underestimated is our current view on true gregarine biodiversity. It is now time to turn to gregarines to widen the currently highly skewed view we have of adaptive mechanisms developed by Apicomplexa.
Keywords: Apicomplexa; Evolutionary history; Genomics; Parasitology; Protozoa.
© 2020 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
Similar articles
-
Marine gregarine genomes reveal the breadth of apicomplexan diversity with a partially conserved glideosome machinery.BMC Genomics. 2022 Jul 2;23(1):485. doi: 10.1186/s12864-022-08700-8. BMC Genomics. 2022. PMID: 35780080 Free PMC article.
-
Molecular Phylogeny and Ultrastructure of Caliculium glossobalani n. gen. et sp. (Apicomplexa) from a Pacific Glossobalanus minutus (Hemichordata) Confounds the Relationships Between Marine and Terrestrial Gregarines.J Eukaryot Microbiol. 2014 Jul-Aug;61(4):343-53. doi: 10.1111/jeu.12114. Epub 2014 May 23. J Eukaryot Microbiol. 2014. PMID: 24702818
-
Molecular Phylogenetic Positions and Ultrastructure of Marine Gregarines (Apicomplexa) Cuspisella ishikariensis n. gen., n. sp. and Loxomorpha cf. harmothoe from Western Pacific scaleworms (Polynoidae).J Eukaryot Microbiol. 2018 Jul;65(5):637-647. doi: 10.1111/jeu.12509. Epub 2018 Feb 21. J Eukaryot Microbiol. 2018. PMID: 29399925
-
Phylogeny and evolution of apicoplasts and apicomplexan parasites.Parasitol Int. 2015 Jun;64(3):254-9. doi: 10.1016/j.parint.2014.10.005. Epub 2014 Oct 14. Parasitol Int. 2015. PMID: 25451217 Review.
-
The Symbiotic Spectrum: Where Do the Gregarines Fit?Trends Parasitol. 2019 Sep;35(9):687-694. doi: 10.1016/j.pt.2019.06.013. Epub 2019 Jul 22. Trends Parasitol. 2019. PMID: 31345767 Review.
Cited by
-
Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans.BMC Biol. 2021 Apr 16;19(1):77. doi: 10.1186/s12915-021-01007-2. BMC Biol. 2021. PMID: 33863338 Free PMC article.
-
Gregarines impact consumption and development but not glucosinolate metabolism in the mustard leaf beetle.Front Physiol. 2024 May 1;15:1394576. doi: 10.3389/fphys.2024.1394576. eCollection 2024. Front Physiol. 2024. PMID: 38751987 Free PMC article.
-
Sexual Development in Non-Human Parasitic Apicomplexa: Just Biology or Targets for Control?Animals (Basel). 2021 Oct 4;11(10):2891. doi: 10.3390/ani11102891. Animals (Basel). 2021. PMID: 34679913 Free PMC article. Review.
-
Marine gregarine genomes reveal the breadth of apicomplexan diversity with a partially conserved glideosome machinery.BMC Genomics. 2022 Jul 2;23(1):485. doi: 10.1186/s12864-022-08700-8. BMC Genomics. 2022. PMID: 35780080 Free PMC article.
-
Nutrient Acquisition and Attachment Strategies in Basal Lineages: A Tough Nut to Crack in the Evolutionary Puzzle of Apicomplexa.Microorganisms. 2021 Jul 2;9(7):1430. doi: 10.3390/microorganisms9071430. Microorganisms. 2021. PMID: 34361866 Free PMC article. Review.
References
-
- Adl, S.M., Bass, D., Lane, C.E., Lukes, J., Schoch, C.L., Smirnov, A., Agatha, S., Berney, C., Brown, M.W., Burki, F., Cardenas, P., Cepicka, I., Chistyakova, L., Del Campo, J., Dunthorn, M., Edvardsen, B., Eglit, Y., Guillou, L., Hampl, V., Heiss, A.A., Hoppenrath, M., James, T.Y., Karpov, S., Kim, E., Kolisko, M., Kudryavtsev, A., Lahr, D.J.G., Lara, E., Le Gall, L., Lynn, D.H., Mann, D.G., Massana, I.M.R., Mitchell, E.A.D., Morrow, C., Park, J.S., Pawlowski, J.W., Powell, M.J., Richter, D.J., Rueckert, S., Shadwick, L., Shimano, S., Spiegel, F.W., Torruella, I.C.G., Youssef, N., Zlatogursky, V. and Zhang, Q. (2018) Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4-119
-
- Aly, A.S., Vaughan, A.M. and Kappe, S.H. (2009) Malaria parasite development in the mosquito and infection of the mammalian host. Annu. Rev. Microbiol. 63, 195-221
-
- Aurrecoechea, C., Barreto, A., Basenko, E.Y., Brestelli, J., Brunk, B.P., Cade, S., Crouch, K., Doherty, R., Falke, D., Fischer, S., Gajria, B., Harb, O.S., Heiges, M., Hertz-Fowler, C., Hu, S., Iodice, J., Kissinger, J.C., Lawrence, C., Li, W., Pinney, D.F., Pulman, J.A., Roos, D.S., Shanmugasundram, A., Silva-Franco, F., Steinbiss, S., Stoeckert C.J., Jr., Spruill, D., Wang, H., Warrenfeltz, S. and Zheng, J. (2017) EuPathDB: the eukaryotic pathogen genomics database resource. Nucleic Acids Res. 45, D581-D591
-
- Bahrndorff, S., Alemu, T., Alemneh, T. and Lund Nielsen, J. (2016) The microbiome of animals: implications for conservation biology. Int. J. Genomics 2016, 5304028
-
- Barta, J.R. and Thompson, R.C. (2006) What is Cryptosporidium? Reappraising its biology and phylogenetic affinities. Trends Parasitol. 22, 463-468
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources