Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep;63(9):1269-1282.
doi: 10.1007/s11427-020-1662-x. Epub 2020 Mar 12.

A high-quality genome sequence of alkaligrass provides insights into halophyte stress tolerance

Affiliations

A high-quality genome sequence of alkaligrass provides insights into halophyte stress tolerance

Wenting Zhang et al. Sci China Life Sci. 2020 Sep.

Abstract

Alkaligrass (Puccinellia tenuiflora) is a monocotyledonous halophytic forage grass widely distributed in Northern China. It belongs to the Gramineae family and shares a close phylogenetic relationship with the cereal crops, wheat and barley. Here, we present a high-quality chromosome-level genome sequence of alkaligrass assembled from Illumina, PacBio and 10× Genomics reads combined with genome-wide chromosome conformation capture (Hi-C) data. The ∼1.50 Gb assembled alkaligrass genome encodes 38,387 protein-coding genes, and 54.9% of the assembly are transposable elements, with long terminal repeats being the most abundant. Comparative genomic analysis coupled with stress-treated transcriptome profiling uncovers a set of unique saline- and alkaline-responsive genes in alkaligrass. The high-quality genome assembly and the identified stress related genes in alkaligrass provide an important resource for evolutionary genomic studies in Gramineae and facilitate further understanding of molecular mechanisms underlying stress tolerance in monocotyledonous halophytes. The alkaligrass genome data is freely available at http://xhhuanglab.cn/data/alkaligrass.html .

Keywords: Puccinellia tenuiflora; alkaligrass; genome assembly; saline-alkaline tolerance.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ardie, S.W., Xie, L., Takahashi, R., Liu, S., and Takano, T. (2009). Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. J Exp Bot 60, 3491–3502. - PubMed - PMC
    1. Ardie, S.W., Liu, S., and Takano, T. (2010). Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep 29, 865–874. - PubMed
    1. Buchfink, B., Xie, C., and Huson, D.H. (2015). Fast and sensitive protein alignment using diamond. Nat Methods 12, 59–60. - PubMed - PMC
    1. Burton, J.N., Adey, A., Patwardhan, R.P., Qiu, R., Kitzman, J.O., and Shendure, J. (2013). Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol 31, 1119–1125. - PubMed - PMC
    1. Chin, C.S., Peluso, P., Sedlazeck, F.J., Nattestad, M., Concepcion, G.T., Clum, A., Dunn, C., O’Malley, R., Figueroa-Balderas, R., Morales-Cruz, A., et al. (2016). Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods 13, 1050–1054. - PubMed - PMC

LinkOut - more resources