Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Feb 28:11:122.
doi: 10.3389/fpsyt.2020.00122. eCollection 2020.

The Anti-Inflammatory Role of Omega-3 Polyunsaturated Fatty Acids Metabolites in Pre-Clinical Models of Psychiatric, Neurodegenerative, and Neurological Disorders

Affiliations
Review

The Anti-Inflammatory Role of Omega-3 Polyunsaturated Fatty Acids Metabolites in Pre-Clinical Models of Psychiatric, Neurodegenerative, and Neurological Disorders

Juliette Giacobbe et al. Front Psychiatry. .

Abstract

Inflammation has been identified as one of the main pathophysiological mechanisms underlying neuropsychiatric and neurodegenerative disorders. Despite the role of inflammation in those conditions, there is still a lack of effective anti-inflammatory therapeutic strategies. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) can reduce depressive symptoms and exert anti-inflammatory action putatively by the production of distinct n-3 PUFA-derived metabolites, such as resolvins D (RvD) and E (RvE) series, maresins (MaR) and protectins (PD), which are collectively named specialized pro-resolving mediators (SPMs) and act as strong anti-inflammatory agents. In this review we summarize evidence showing the effects of treatment with those metabolites in pre-clinical models of psychiatric, neurodegenerative and neurological disorders. A total of 25 pre-clinical studies were identified using the PubMed database. Overall, RvD and RvE treatment improved depressive-like behaviors, whereas protectins and maresins ameliorated neurological function. On a cellular level, RvDs increased serotonin levels in a model of depression, and decreased gliosis in neurodegenerative disorders. Protectins prevented neurite and dendrite retraction and apoptosis in models of neurodegeneration, while maresins reduced cell death across all studies. In terms of mechanisms, all SPMs down-regulated pro-inflammatory cytokines. Resolvins activated mTOR and MAP/ERK signaling in models of depression, while resolvins and maresins activated the NF-κB pathway in models of neurodegeneration and neurological disorders. Our review indicates a potential promising approach for tailored therapy with n-3 PUFAs-derived metabolites in the treatment of psychiatric, neurodegenerative, and neurological conditions.

Keywords: maresin; neuroinflammation; omega-3; polyunsaturated fatty acid; protectin; resolvin.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Metabolism of DHA and EPA to SPMs through enzymatic transformation. SPMs are produced upon metabolism of n-3 PUFAs by specific lipoxygenase and cyclooxygenase enzymes. Respectively, the enzymes 15-lipoxygenase-1 (15-LOX) and 12-lipoxygenase (12-LOX) are responsible for initiating the conversion of DHA to protectin-1 (PD1), and maresin 1 and 2 (MaR1, MaR2), whereas 15-LOX, cyclooxygenase 2 (COX-2) and cytochrome P450 are responsible for the conversion of DHA to resolvins D series (RvD), and of EPA to resolvins E series (RvE). Downstream, metabolism of RvD and RvE are dependent on 5-lipoxygenase (5-LOX). Aspirin-acetylated COX-2 followed by 5-lipoxygenase (5-LOX) transformation generates aspirin-triggered isomers of RvDs (AT-RvD).
Figure 2
Figure 2
Comparison of behavioral, cellular, and molecular findings upon treatment with SPMs in the context of psychiatric, neurodegenerative, and neurological disorders. AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; MAP/ERK, mitogen-activated protein kinases/extracellular signal-regulated kinases; MaR, maresin; mTORC, mammalian target of rapamycin complex; NF-κB, Nuclear factor-kappa B; PD, protectin; PI3K/Akt, Phosphoinositide 3-kinases/Protein kinase B; RvD, resolvins D series; RvE, resolvins E series. ↗ increase; ↘ decrease.

References

    1. Najjar S, Pearlman DM, Alper K, Najjar A, Devinsky O. Neuroinflammation and psychiatric illness. J Neuroinflammation. (2013) 10:43. 10.1186/1742-2094-10-43 - DOI - PMC - PubMed
    1. Pariante CM. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur Neuropsychopharmacol. (2017) 27:554–9. 10.1016/j.euroneuro.2017.04.001 - DOI - PubMed
    1. Zunszain PA, Hepgul N, Pariante CM. Inflammation and depression. Curr Top Behav Neurosci. (2013) 14:135–51. 10.1007/7854_2012_211 - DOI - PubMed
    1. Sawyer KM, Zunszain PA, Dazzan P, Pariante CM. Intergenerational transmission of depression: clinical observations and molecular mechanisms. Mol Psychiatry. (2019) 24:1157–77. 10.1038/s41380-018-0265-4 - DOI - PubMed
    1. Nuzzo D, Picone P, Caruana L, Vasto S, Barera A, Caruso C, et al. . Inflammatory mediators as biomarkers in brain disorders. Inflammation. (2014) 37:639–48. 10.1007/s10753-013-9780-2 - DOI - PubMed