A dual photoredox-nickel strategy for remote functionalization via iminyl radicals: radical ring-opening-arylation, -vinylation and -alkylation cascades
- PMID: 32180920
- PMCID: PMC7053659
- DOI: 10.1039/c9sc02616a
A dual photoredox-nickel strategy for remote functionalization via iminyl radicals: radical ring-opening-arylation, -vinylation and -alkylation cascades
Erratum in
-
Correction: A dual photoredox-nickel strategy for remote functionalization via iminyl radicals: radical ring-opening-arylation, -vinylation and -alkylation cascades.Chem Sci. 2019 Sep 26;10(40):9380-9381. doi: 10.1039/c9sc90192b. Chem Sci. 2019. PMID: 34040710 Free PMC article.
Abstract
A divergent strategy for the remote arylation, vinylation and alkylation of nitriles is described. These processes proceed through the photoredox generation of a cyclic iminyl radical and its following ring-opening reaction. The distal nitrile radical is then engaged in nickel-based catalytic cycles to form C-C bonds with aryl bromides, alkynes and alkyl bromides.
This journal is © The Royal Society of Chemistry 2019.
Figures








References
-
- Dowd P., Zhang W. Chem. Rev. 1993;93:2091.
- Gansäuer A., Lauterbach T., Narayan S. Angew. Chem., Int. Ed. 2003;42:5556. - PubMed
- Cekovic Z. J. Serb. Chem. Soc. 2005;70:287.
- Nechab M., Mondal S., Bertrand M. P. Chem.–Eur. J. 2014;20:16034. - PubMed
- Chu J. C. K., Rovis T. Angew. Chem., Int. Ed. 2017;45:62.
-
- Francisco C. G., Herrera A. J., Martin A., Perez-Martin I., Suarez E. Tetrahedron. 2007;48:6384.
- Francisco C. G., Herrera A. J., Suarez E. J. Org. Chem. 2003;68:1012. - PubMed
- Zhang H., Muniz K. ACS Catal. 2017;7:4122.
- Martinez C., Muniz K. Angew. Chem., Int. Ed. 2015;54:8287. - PubMed
- Chu J. C. K., Rovis T. Nature. 2016;539:272–275. - PMC - PubMed
- Choi G. J., Zhu Q., Miller D. C., Gu C. J., Knowles R. R. Nature. 2016;539:268–271. - PMC - PubMed
-
-
For a review, see: . For selected examples, see:
- Morcillo S. P. Angew. Chem., Int. Ed. 2019 doi: 10.1002/anie.201905218. - DOI - PubMed
- Maity S., Zheng N. Angew. Chem., Int. Ed. 2012;51:9562. - PMC - PubMed
- Beatty J. W., Stephenson C. R. J. J. Am. Chem. Soc. 2014;136:10270. - PMC - PubMed
- Pitts C. R., Bloom M. S., Bume D. D., Zhang Q. A., Lectka T. Chem. Sci. 2015;6:5225. - PMC - PubMed
- Jiang H., An X., Tong K., Zheng T., Zhang Y., Yu S. Angew. Chem., Int. Ed. 2015;54:4055. - PubMed
- Guo J.-J., Hu A., Chen Y., Sun J., Tang H., Zuo Z. Angew. Chem., Int. Ed. 2016;128:15319. - PubMed
- Yayla H. G., Wang H., Tarantino K. T., Orbe H. S., Knowles R. R. J. Am. Chem. Soc. 2016;138:10794. - PMC - PubMed
- Zhang J., Li Y., Xu R., Chen Y. Angew. Chem., Int. Ed. 2017;59:12619. - PubMed
-
-
- Forrester A. R., Gill M., Sadd J. S., Thomson R. H. J. Chem. Soc., Perkin Trans. 1. 1979;1:612.
- Forrester A. R., Gill M., Thomson R. H. J. Chem. Soc., Chem. Commun. 1976:677.
LinkOut - more resources
Full Text Sources
Other Literature Sources