Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr 8;12(14):16451-16461.
doi: 10.1021/acsami.0c00900. Epub 2020 Mar 27.

Insights into the Cathode-Electrolyte Interphases of High-Energy-Density Cathodes in Lithium-Ion Batteries

Affiliations

Insights into the Cathode-Electrolyte Interphases of High-Energy-Density Cathodes in Lithium-Ion Batteries

Evan M Erickson et al. ACS Appl Mater Interfaces. .

Abstract

We present a comprehensive study of cycled high-Ni (LiNi1-xMxO2, M = metals), Li-rich (Li1+xMnyM1-x-yO2), and high-voltage spinel (LiMn1.5Ni0.5O4) electrodes with time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy in conjunction with electrochemical techniques to better understand their evolving cathode-electrolyte interphase structure during cycling. TOF-SIMS provides fragment-specific information regarding the surface film content for each of the electrodes. High-Ni cathodes show thick surface films initially containing Li2CO3, later developing oxidized organic carbonates throughout cycling. Li-rich electrode surface films develop strong characteristics during their first activation cycles, where released O2 oxidizes organic carbonates to form polymeric carbons and decomposes LiPF6. High-voltage spinel electrodes operate outside the standard electrolyte stability window, generating reactive oxidized electrolyte species that further decompose LiPF6. The distribution and concentration of these different chemical fragments measured by TOF-SIMS are finally summarized by color-coded high-resolution images of cycled high-Ni, Li-rich, and high-voltage spinel electrodes.

Keywords: electrochemistry; high-energy-density cathodes; interphases; lithium-ion batteries; surface analysis.

PubMed Disclaimer

LinkOut - more resources