Hydrocyclones as cell retention device for CHO perfusion processes in single-use bioreactors
- PMID: 32181883
- DOI: 10.1002/bit.27335
Hydrocyclones as cell retention device for CHO perfusion processes in single-use bioreactors
Abstract
In this study, a hydrocyclone (HC) especially designed for mammalian cell separation was applied for the separation of Chinese hamster ovary cells. The effect of key features on the separation efficiency, such as type of pumphead in the peristaltic feed pump, use of an auxiliary pump to control the perfusate flow rate, and tubing size in the recirculation loop were evaluated in batch separation tests. Based on these preliminary batch tests, the HC was then integrated to 50-L disposable bioreactor bags. Three perfusion runs were performed, including one where perfusion was started from a low-viability late fed-batch culture, and viability was restored. The successive runs allowed optimization of the HC-bag configuration, and cultivations with 20-25 days duration at cell concentrations up to 50 × 106 cells/ml were performed. Separation efficiencies up to 96% were achieved at pressure drops up to 2.5 bar, with no issues of product retention. To our knowledge, this is the first report in literature of high cell densities obtained with a HC integrated to a disposable perfusion bioreactor.
Keywords: CHO cells; hydrocyclone; perfusion; separation efficiency; single-use bioreactor.
© 2020 Wiley Periodicals, Inc.
Similar articles
-
Hydrocyclones as cell retention devices for an N-1 perfusion bioreactor linked to a continuous-flow stirred tank production bioreactor.Biotechnol Bioeng. 2021 May;118(5):1973-1986. doi: 10.1002/bit.27711. Epub 2021 Feb 19. Biotechnol Bioeng. 2021. PMID: 33559888
-
Orbitally Shaken Single-Use Bioreactor for Animal Cell Cultivation: Fed-Batch and Perfusion Mode.Methods Mol Biol. 2020;2095:105-123. doi: 10.1007/978-1-0716-0191-4_7. Methods Mol Biol. 2020. PMID: 31858465
-
Process intensification in fed-batch production bioreactors using non-perfusion seed cultures.MAbs. 2019 Nov-Dec;11(8):1502-1514. doi: 10.1080/19420862.2019.1652075. Epub 2019 Aug 19. MAbs. 2019. PMID: 31379298 Free PMC article.
-
Perfusion culture of Chinese Hamster Ovary cells for bioprocessing applications.Crit Rev Biotechnol. 2022 Nov;42(7):1099-1115. doi: 10.1080/07388551.2021.1998821. Epub 2021 Nov 29. Crit Rev Biotechnol. 2022. PMID: 34844499 Review.
-
Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells.Biotechnol Bioeng. 2003 Jun 30;82(7):751-65. doi: 10.1002/bit.10629. Biotechnol Bioeng. 2003. PMID: 12701141 Review.
Cited by
-
A common framework for integrated and continuous biomanufacturing.Biotechnol Bioeng. 2021 Apr;118(4):1721-1735. doi: 10.1002/bit.27690. Epub 2021 Mar 1. Biotechnol Bioeng. 2021. PMID: 33491769 Free PMC article. Review.
-
Enhancing the Performance of Tangential Flow Microfiltration for Bioreactor Clarification.Membranes (Basel). 2025 Mar 3;15(3):78. doi: 10.3390/membranes15030078. Membranes (Basel). 2025. PMID: 40137030 Free PMC article.
-
Enhancing and stabilizing monoclonal antibody production by Chinese hamster ovary (CHO) cells with optimized perfusion culture strategies.Front Bioeng Biotechnol. 2023 Jan 20;11:1112349. doi: 10.3389/fbioe.2023.1112349. eCollection 2023. Front Bioeng Biotechnol. 2023. PMID: 36741761 Free PMC article.
-
A novel hybrid bioprocess strategy addressing key challenges of advanced biomanufacturing.Front Bioeng Biotechnol. 2023 Jun 30;11:1211410. doi: 10.3389/fbioe.2023.1211410. eCollection 2023. Front Bioeng Biotechnol. 2023. PMID: 37456731 Free PMC article.
-
Particle movement and fluid behavior visualization using an optically transparent 3D-printed micro-hydrocyclone.Biomicrofluidics. 2020 Nov 19;14(6):064106. doi: 10.1063/5.0025391. eCollection 2020 Nov. Biomicrofluidics. 2020. PMID: 33269035 Free PMC article.
References
REFERENCES
-
- Batt, B., Davis, R., & Kompala, D. (1990). Inclined sedimentation for selective retention of viable hybridomas in a continuous suspension bioreactor. Biotechnology Progress, 6(6), 458-464. https://doi.org/10.1021/bp00006a600
-
- Bhardwaj, P., Bagdi, P., & Sen, A. K. (2011). Microfluidic device based on a micro-hydrocyclone for particle-liquid separation. Lab on a Chip, 11(23), 4012. https://doi.org/10.1039/c1lc20606k
-
- Castilho, L. R. (2015). Continuous animal cell perfusion processes: The first step toward integrated continuous biomanufacturing. In G. Subramanian (Ed.), Continuous Processing in Pharmaceutical Manufacturing (pp. 115-154). Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527673681.ch06
-
- Castilho, L. R., & Medronho, R. A. (2002). Cell retention devices for suspended-cell perfusion cultures. Advances in Biochemical Engineering/Biotechnology, 74, 129-169. https://doi.org/10.1007/3-540-45736-4_7
-
- Castilho, L. R., & Medronho, R. A. (2008). Animal cell separation. In L. R. Castilho, A. M. Moraes, E. F. P. Augusto & M. Butler (Eds.), Animal Cell Technology: From Biopharmaceuticals to Gene Therapy (1st ed.). Nova York: Taylor & Francis.
Publication types
MeSH terms
Substances
Grants and funding
- Coppetec-PEQ20761/GE Healthcare/International
- Doutorado GD /140752/2017-0/Conselho Nacional de Desenvolvimento Científico e Tecnológico/International
- PQ-1D / 312328/2013-3/Conselho Nacional de Desenvolvimento Científico e Tecnológico/International
- Cientistas do Nosso Estado / 202.973/2015/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro/International
- Programa de Excelência Acadêmica - PROEX/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/International
LinkOut - more resources
Full Text Sources