Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2020 Mar 17;20(1):137.
doi: 10.1186/s12872-020-01404-5.

6q25.1 (TAB2) microdeletion is a risk factor for hypoplastic left heart: a case report that expands the phenotype

Affiliations
Case Reports

6q25.1 (TAB2) microdeletion is a risk factor for hypoplastic left heart: a case report that expands the phenotype

Andrew Cheng et al. BMC Cardiovasc Disord. .

Abstract

Introduction: Hypoplastic left heart syndrome (HLHS) is a rare but devastating congenital heart defect (CHD) accounting for 25% of all infant deaths due to a CHD. The etiology of HLHS remains elusive, but there is increasing evidence to support a genetic cause for HLHS; in particular, this syndrome is associated with abnormalities in genes involved in cardiac development. Consistent with the involvement of heritable genes in structural heart abnormalities, family members of HLHS patients have a higher incidence of both left- and right-sided valve abnormalities, including bicuspid aortic valve (BAV).

Case presentation: We previously described (Am J Med Genet A 173:1848-1857, 2017) a 4-generation family with a 6q25.1 microdeletion encompassing TAB2, a gene known to play an important role in outflow tract and cardiac valve formation during embryonic development. Affected adult family members have short stature, dysmorphic facial features, and multiple valve dysplasia, including BAV. This follow-up report includes previously unpublished details of the cardiac phenotype of affected family members. It also describes a baby recently born into this family who was diagnosed prenatally with short long bones, intrauterine growth restriction (IUGR), and HLHS. He was the second family member to have HLHS; the first died several decades ago. Postnatal genetic testing confirmed the baby had inherited the familial TAB2 deletion.

Conclusions: Our findings suggest TAB2 haploinsufficiency is a risk factor for HLHS and expands the phenotypic spectrum of this microdeletion syndrome. Chromosomal single nucleotide polymorphism (SNP) microarray analysis and molecular testing for a TAB2 loss of function variant should be considered for individuals with HLHS, particularly in those with additional non-cardiac findings such as IUGR, short stature, and/or dysmorphic facial features.

Keywords: Bicuspid aortic valve; Hypoplastic left heart syndrome; TAB2 gene deletion.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Hypoplastic left heart syndrome and its surgical repair. Legend: HLHS involves a hypoplastic aorta and left ventricle, a large patent ductus arteriosus (PDA), and an atrial septal defect (ASD). This results in a mixture of oxygenated (from PDA flow) and deoxygenated blood flow to the body. A 3-stage surgical repair involves ligation of the PDA, construction of a neo-Aorta, and a baffle in the right atrium that guides deoxygenated blood into the pulmonary circulation. (Reproduced with permission from Benson DW, Martin LJ, Lo CW. [1])
Fig. 2
Fig. 2
Pedigree of the four-generation family showing segregation of the 6q25.1 deletion with congenital heart defects
Fig. 3
Fig. 3
Echocardiogram findings for previously reported family members. Legend: II.3 A: Anterior and posterior aortic leaflets (orange arrows) of a bicuspid aortic valve. II.3B: Calcified aortic valve (red arrow) with a dilated ascending aorta. II.3C: Cardiac MR image showing the ascending aortic aneurysm dilated at 5.8 cm. III.3A: Two leaflets of the bicuspid aortic valve (orange arrows). III.3B: Doming of the aortic valve (blue arrow), consistent with a bicuspid aortic valve, and mitral valve prolapse (red arrow). III.4A: Anterior and posterior leaflets (orange arrows) of a bicuspid aortic valve. III.4B: Thickened mitral valve (red arrow). III.5A: Tri-leaflet aortic valve. III.5B: Thickened mitral valve leaflets (red arrow). IV.1A: Bicuspid aortic valve leaflets (orange arrows). IV.1B-C: Septal defect between the left and right atrium
Fig. 4
Fig. 4
Echocardiogram findings for IV.3. Legend: a Large atrial septal defect (ASD) with a diminutive/hypoplastic left ventricle (LV); RV-right ventricle. b Orange arrows point to bicuspid aortic valve leaflets. c Hypoplastic aorta (Ao) with a discrete coarctation. d and e Two views of the patent ductus arteriosus (PDA); PA -pulmonary artery; RPA - right pulmonary artery; LPA - left pulmonary artery. f-g-h Color and spectral Doppler of the to-and-fro PDA flow from the PA and Ao

Similar articles

Cited by

References

    1. Benson DW, Martin LJ, Lo CW. Genetics of Hypoplastic left heart syndrome. J Pediatr. 2016;173:25–31. doi: 10.1016/j.jpeds.2016.02.052. - DOI - PubMed
    1. Feinstein JA, Benson DW, Dubin AM, Cohen MS, Maxey DM, Mahle WT, Pahl E, Villafañe J, Bhatt AB, Peng LF, et al. Hypoplastic left heart syndrome: current considerations and expectations. J Am Coll Cardiol. 2012;59(1 Suppl):S1–42. doi: 10.1016/j.jacc.2011.09.022. - DOI - PMC - PubMed
    1. Hinton RB, Martin LJ, Tabangin ME, Mazwi ML, Cripe LH, Benson DW. Hypoplastic left heart syndrome is heritable. J Am Coll Cardiol. 2007;50(16):1590–1595. doi: 10.1016/j.jacc.2007.07.021. - DOI - PubMed
    1. Natowicz M, Chatten J, Clancy R, Conard K, Glauser T, Huff D, Lin A, Norwood W, Rorke LB, Uri A. Genetic disorders and major extracardiac anomalies associated with the hypoplastic left heart syndrome. Pediatrics. 1988;82(5):698–706. - PubMed
    1. Warburton D, Ronemus M, Kline J, Jobanputra V, Williams I, Anyane-Yeboa K, Chung W, Yu L, Wong N, Awad D, et al. The contribution of de novo and rare inherited copy number changes to congenital heart disease in an unselected sample of children with conotruncal defects or hypoplastic left heart disease. Hum Genet. 2014;133(1):11–27. doi: 10.1007/s00439-013-1353-9. - DOI - PMC - PubMed

Publication types

MeSH terms

Substances