Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Mar 5:12:27-44.
doi: 10.2147/ORR.S218991. eCollection 2020.

Optimal Management of Acromioclavicular Dislocation: Current Perspectives

Affiliations
Review

Optimal Management of Acromioclavicular Dislocation: Current Perspectives

Philip C Nolte et al. Orthop Res Rev. .

Abstract

Injuries to the acromioclavicular (AC) joint are common and mostly involve younger, male individuals. Whereas the majority of AC joint dislocations can be treated nonoperatively with a trial of immobilization, pain medication, cryotherapy, and physiotherapy, there are patients that do not respond well to conservative management and may require surgical treatment. Identifying and treating these patients according to the type and chronicity of AC joint dislocation is paramount. To date, a myriad of surgical techniques have been proposed to address unstable AC joint dislocations and are indicative of the uncertainty that exists in optimal management of these injuries. Historically research has focused on the restoration of the coracoclavicular ligament complex. However, recently the importance of the acromioclavicular capsule and ligaments has been emphasized. This review aims to provide the reader with an overview of current treatment strategies and research, as well as future perspectives.

Keywords: AC capsule; AC joint; coracoclavicular; reconstruction; shoulder surgery; stabilization.

PubMed Disclaimer

Conflict of interest statement

The position of PCN and LL at the Steadman Philippon Research Institute is supported by Arthrex. PJM is a consultant for and receives royalties from Arthrex, Medbridge, and Springer; owns stock in GameReady and VuMedi; receives support from the Steadman Philippon Research Institute and Vail Valley Medical Center; and has corporate sponsorship from the Steadman Philippon Research Institute, Smith & Nephew, Arthrex, Siemens. The authors report no other conflicts of interest in this work.

Figures

Figure 1
Figure 1
Superior view of a cadaveric left shoulder specimen showing the acromioclavicular capsule.
Figure 2
Figure 2
True anteroposterior comparative radiograph, with x-ray beam directed 10–15 degrees cephalad (Zanca view), showing bilateral acromioclavicular (AC) joints. Left – a Rockwood type III dislocation injury of the left AC joint. Right – a normal right AC joint.
Figure 3
Figure 3
Conventional anteroposterior radiographic images showing both acromioclavicular joints. The left side shows a Rockwood type V injury (circle) with an increase in the coracoclavicular (CC) distance of more than 100%. Pentagon - Normal CC distance on the right uninjured side. Star - Increased CC distance of more than 100% in a Rockwood type V injury.
Figure 4
Figure 4
Conventional axial radiographic images of a left shoulder demonstrating static horizontal instability in a Rockwood type IIIB injury. Blue plane – Acromion; Green plane – Clavicle; Star - Increase in posterior static translation.
Figure 5
Figure 5
Flowchart illustrating the management of acromioclavicular joint dislocation.
Figure 6
Figure 6
Conventional anteroposterior radiographic images of a left shoulder following stabilization with a suspensory button device (circle).
Figure 7
Figure 7
Arthroscopic images of a left shoulder. (A) Preparation of the undersurface of the coracoid base with an arthroscopic shaver. (B) Placement of the arthroscopic aiming device at the base of the coracoid. Pentagon – Coracoid; Circle - Arthroscopic shaver; Star -Arthroscopic aiming device.
Figure 8
Figure 8
Arthroscopic images of a left shoulder. (A): Retrieval of the shuttle suture for the suspensory device with an arthroscopic grasper. (B): Placement of the cortical button on the undersurface of the base of the coracoid. Pentagon – Coracoid; Circle - Cannulated drill; Star - Cortical Button.
Figure 9
Figure 9
Arthroscopic and external view of the placed tendon graft. (A): Arthroscopic view of the tendon graft that was looped around the coracoid. (B): External view of the placed graft and sutured graft. Pentagon – Coracoid; Star - Tendon graft.

References

    1. The role of the discs of the sternoclavicular and acromioclavicular joints. DePalma, AF: Clin Orthop Relat Res. 1959;13:7–12.
    1. Tillmann BPW. Clinical Anatomy. Stanford (CT): Appleton and Lange; 1998.
    1. Warth RJ, Martetschlager F, Gaskill TR, Millett PJ. Acromioclavicular joint separations. Curr Rev Musculoskelet Med. 2013;6(1):71–78. doi:10.1007/s12178-012-9144-9 - DOI - PMC - PubMed
    1. Collins DN. Disorders of the acromioclavicular join In: Rockwood CA, Wirth MA, Lippitt SB, editors. The Shoulder. 4th ed. Philadelphia (PA): Saunders/Elsevier; 2009:453–526.
    1. Stine IA, Vangsness CT Jr. Analysis of the capsule and ligament insertions about the acromioclavicular joint: a cadaveric study. Arthroscopy. 2009;25(9):968–974. doi:10.1016/j.arthro.2009.04.072 - DOI - PubMed