Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Feb 26;12(2):100-109.
doi: 10.4252/wjsc.v12.i2.100.

Mesenchymal stem cells from different sources and their derived exosomes: A pre-clinical perspective

Affiliations
Review

Mesenchymal stem cells from different sources and their derived exosomes: A pre-clinical perspective

María Álvarez-Viejo. World J Stem Cells. .

Abstract

Since the introduction of cell therapy as a strategy for the treatment of many diseases, mesenchymal stem cells have emerged as ideal candidates, yet the underlying mechanisms of their beneficial effects are only partially understood. At the start of the 21st century, a paracrine effect was proposed as a mechanism of tissue repair by these cells. In addition, a role was suggested for a heterogeneous population of extracellular vesicles in cell-to-cell communication. Some of these vesicles including exosomes have been isolated from most fluids and cells, as well as from supernatants of in vitro cell cultures. Recent research in the field of regenerative medicine suggests that exosomes derived from mesenchymal stem cells could be a powerful new therapeutic tool. This review examines the therapeutic potential of these exosomes obtained from the sources most used in cell therapy: bone marrow, adipose tissue, and umbilical cord.

Keywords: Cellular therapy; Exosomes; Mesenchymal stem cells.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: Author declare no conflicts of interest related to this article.

References

    1. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403. - PubMed
    1. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. - PubMed
    1. Altanerova U, Jakubechova J, Repiska V, Altaner C. Exosomes of human mesenchymal stem/stromal/medicinal signaling cells. Neoplasma. 2017;64:809–815. - PubMed
    1. Phan J, Kumar P, Hao D, Gao K, Farmer D, Wang A. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. J Extracell Vesicles. 2018;7:1522236. - PMC - PubMed
    1. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005;11:367–368. - PubMed