Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug;22(4):1132-1148.
doi: 10.1007/s11307-020-01487-8.

Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms

Affiliations

Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms

Isaac Shiri et al. Mol Imaging Biol. 2020 Aug.

Abstract

Purpose: Considerable progress has been made in the assessment and management of non-small cell lung cancer (NSCLC) patients based on mutation status in the epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene (KRAS). At the same time, NSCLC management through KRAS and EGFR mutation profiling faces challenges. In the present work, we aimed to evaluate a comprehensive radiomics framework that enabled prediction of EGFR and KRAS mutation status in NSCLC patients based on radiomic features from low-dose computed tomography (CT), contrast-enhanced diagnostic quality CT (CTD), and positron emission tomography (PET) imaging modalities and use of machine learning algorithms.

Methods: Our study involved NSCLC patients including 150 PET, low-dose CT, and CTD images. Radiomic features from original and preprocessed (including 64 bin discretizing, Laplacian-of-Gaussian (LOG), and Wavelet) images were extracted. Conventional clinically used standard uptake value (SUV) parameters and metabolic tumor volume (MTV) were also obtained from PET images. Highly correlated features were pre-eliminated, and false discovery rate (FDR) correction was performed with the resulting q-values reported for univariate analysis. Six feature selection methods and 12 classifiers were then used for multivariate prediction of gene mutation status (provided by polymerase chain reaction (PCR)) in patients. We performed 10-fold cross-validation for model tuning to improve robustness, and our developed models were assessed on an independent validation set with 68 patients (common in all three imaging modalities). The average area under the receiver operator characteristic curve (AUC) was utilized for performance evaluation.

Results: The best predictive power for conventional PET parameters was achieved by SUVpeak (AUC 0.69, p value = 0.0002) and MTV (AUC 0.55, p value = 0.0011) for EGFR and KRAS, respectively. Univariate analysis of extracted radiomics features improved AUC performance to 0.75 (q-value 0.003, Short-Run Emphasis feature of GLRLM from LOG preprocessed image of PET with sigma value 1.5) and 0.71 (q-value 0.00005, Large Dependence Low Gray-Level Emphasis feature of GLDM in LOG preprocessed image of CTD with sigma value 5) for EGFR and KRAS, respectively. Furthermore, multivariate machine learning-based AUC performances were significantly improved to 0.82 for EGFR (LOG preprocessed image of PET with sigma 3 with variance threshold (VT) feature selector and stochastic gradient descent (SGD) classifier (q-value = 4.86E-05) and 0.83 for KRAS (LOG preprocessed image of CT with sigma 3.5 with select model (SM) feature selector and SGD classifier (q-value = 2.81E-09).

Conclusion: Our work demonstrated that non-invasive and reliable radiomics analysis can be successfully used to predict EGFR and KRAS mutation status in NSCLC patients. We demonstrated that radiomic features extracted from different image-feature sets could be used for EGFR and KRAS mutation status prediction in NSCLC patients and showed improved predictive power relative to conventional image-derived metrics.

Keywords: EGFR; KRAS; Machine learning; NSCLC; PET/CT; Radiogenomics.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Roberts PJ, Stinchcombe TE, Der CJ, Socinski MA (2010) Personalized medicine in non–small-cell lung cancer: is KRAS a useful marker in selecting patients for epidermal growth factor receptor–targeted therapy? J Clin Oncol 28:4769–4777 - PubMed
    1. Ludovini V, Bianconi F, Pistola L, Chiari R, Minotti V, Colella R, Giuffrida D, Tofanetti FR, Siggillino A, Flacco A, Baldelli E, Iacono D, Mameli MG, Cavaliere A, Crinò L (2011) Phosphoinositide-3-kinase catalytic alpha and KRAS mutations are important predictors of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer. J Thorac Oncol 6:707–715 - PubMed
    1. Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P, Papadimitriou CA, Murray S (2008) Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 9:962–972 - PubMed
    1. Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS, Ince WL, Jänne PA, Januario T, Johnson DH, Klein P, Miller VA, Ostland MA, Ramies DA, Sebisanovic D, Stinson JA, Zhang YR, Seshagiri S, Hillan KJ (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non–small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 23:5900–5909 - PubMed
    1. Riely GJ, Marks J, Pao W (2009) KRAS mutations in non–small cell lung cancer. Ann Am Thorac Soc 6:201–205

Publication types

LinkOut - more resources