An RNA biology perspective on species-specific programmable RNA antibiotics
- PMID: 32185839
- DOI: 10.1111/mmi.14476
An RNA biology perspective on species-specific programmable RNA antibiotics
Abstract
Our body is colonized by a vast array of bacteria the sum of which forms our microbiota. The gut alone harbors >1,000 bacterial species. An understanding of their individual or synergistic contributions to human health and disease demands means to interfere with their functions on the species level. Most of the currently available antibiotics are broad-spectrum, thus too unspecific for a selective depletion of a single species of interest from the microbiota. Programmable RNA antibiotics in the form of short antisense oligonucleotides (ASOs) promise to achieve precision manipulation of bacterial communities. These ASOs are coupled to small peptides that carry them inside the bacteria to silence mRNAs of essential genes, for example, to target antibiotic-resistant pathogens as an alternative to standard antibiotics. There is already proof-of-principle with diverse bacteria, but many open questions remain with respect to true species specificity, potential off-targeting, choice of peptides for delivery, bacterial resistance mechanisms and the host response. While there is unlikely a one-fits-all solution for all microbiome species, I will discuss how recent progress in bacterial RNA biology may help to accelerate the development of programmable RNA antibiotics for microbiome editing and other applications.
Keywords: RNA-seq; antibiotic; microbiome; small RNA.
© 2020 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.
Similar articles
-
A quantitative approach to measure and predict microbiome response to antibiotics.mSphere. 2024 Sep 25;9(9):e0048824. doi: 10.1128/msphere.00488-24. Epub 2024 Sep 4. mSphere. 2024. PMID: 39230261 Free PMC article.
-
Extended antibiotic treatment in salmon farms select multiresistant gut bacteria with a high prevalence of antibiotic resistance genes.PLoS One. 2018 Sep 11;13(9):e0203641. doi: 10.1371/journal.pone.0203641. eCollection 2018. PLoS One. 2018. PMID: 30204782 Free PMC article.
-
Antibiotics and the Intestinal Microbiome : Individual Responses, Resilience of the Ecosystem, and the Susceptibility to Infections.Curr Top Microbiol Immunol. 2016;398:123-146. doi: 10.1007/82_2016_504. Curr Top Microbiol Immunol. 2016. PMID: 27738912 Review.
-
ASOBIOTICS 2024: an interdisciplinary symposium on antisense-based programmable RNA antibiotics.RNA. 2025 Mar 18;31(4):465-474. doi: 10.1261/rna.080347.124. RNA. 2025. PMID: 39814459 Free PMC article.
-
Antibiotic-Induced Changes in the Intestinal Microbiota and Disease.Trends Mol Med. 2016 Jun;22(6):458-478. doi: 10.1016/j.molmed.2016.04.003. Epub 2016 May 10. Trends Mol Med. 2016. PMID: 27178527 Free PMC article. Review.
Cited by
-
Evaluation of accessible regions of Escherichia coli fimH mRNA through computational prediction and experimental investigation.Iran J Microbiol. 2021 Oct;13(5):653-663. doi: 10.18502/ijm.v13i5.7430. Iran J Microbiol. 2021. PMID: 34900163 Free PMC article.
-
Strategies to combat Gram-negative bacterial resistance to conventional antibacterial drugs: a review.Osong Public Health Res Perspect. 2023 Oct;14(5):333-346. doi: 10.24171/j.phrp.2022.0323. Epub 2023 Oct 18. Osong Public Health Res Perspect. 2023. PMID: 37920891 Free PMC article.
-
Targeting of the Essential acpP, ftsZ, and rne Genes in Carbapenem-Resistant Acinetobacter baumannii by Antisense PNA Precision Antibacterials.Biomedicines. 2021 Apr 15;9(4):429. doi: 10.3390/biomedicines9040429. Biomedicines. 2021. PMID: 33921011 Free PMC article.
-
RNA-based medicine: from molecular mechanisms to therapy.EMBO J. 2023 Nov 2;42(21):e114760. doi: 10.15252/embj.2023114760. Epub 2023 Sep 20. EMBO J. 2023. PMID: 37728251 Free PMC article. Review.
-
High-Throughput Tiling of Essential mRNAs Increases Potency of Antisense Antibiotics.Adv Sci (Weinh). 2025 Jul;12(28):e2504284. doi: 10.1002/advs.202504284. Epub 2025 Apr 30. Adv Sci (Weinh). 2025. PMID: 40304263 Free PMC article.
References
REFERENCES
-
- Abt, M. C., McKenney, P. T., & Pamer, E. G. (2016). Clostridium difficile colitis: Pathogenesis and host defence. Nature Reviews Microbiology, 14, 609-620. https://doi.org/10.1038/nrmicro.2016.108
-
- Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 48(Suppl 1), 5-16. https://doi.org/10.1093/jac/48.suppl_1.5
-
- Balaban, N. Q., Helaine, S., Lewis, K., Ackermann, M., Aldridge, B., Andersson, D. I., … Zinkernagel, A. (2019). Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology, 17, 441-448. https://doi.org/10.1038/s41579-019-0196-3
-
- Balbontin, R., Fiorini, F., Figueroa-Bossi, N., Casadesus, J., & Bossi, L. (2010). Recognition of heptameric seed sequence underlies multi-target regulation by RybB small RNA in Salmonella enterica. Molecular Microbiology, 78, 380-394. https://doi.org/10.1111/j.1365-2958.2010.07342.x
-
- Bandyra, K. J., Said, N., Pfeiffer, V., Gorna, M. W., Vogel, J., & Luisi, B. F. (2012). The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Molecular Cell, 47, 943-953. https://doi.org/10.1016/j.molcel.2012.07.015
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical