Isolation and Characterization of Ochrobactrum tritici for Penicillin V Potassium Degradation
- PMID: 32188746
- PMCID: PMC7082136
- DOI: 10.1128/mSphere.00058-20
Isolation and Characterization of Ochrobactrum tritici for Penicillin V Potassium Degradation
Abstract
Substantial concentrations of penicillin V potassium (PVK) have been found in livestock manure, soil, and wastewater effluents, which may pose potential threats to human health and contribute to the emergence of penicillin-resistant bacterial strains. In this study, bacterial strains capable of degrading PVK were isolated from sludge and characterized. Strain X-2 was selected for biodegradation of PVK. Based on morphological observations and 16S rRNA gene sequencing, strain X-2 was identified as an Ochrobactrum tritici strain. To enhance the PVK degradation ability of PVK, a whole-cell biodegradation process of Ochrobactrum tritici X-2 was established and optimized. In the whole-cell biodegradation process, the optimal temperature and pH were 30°C and 7.0, respectively. Under the optimized conditions, the degradation rate using 0.5 mg/ml PVK reached 100% within 3 h. During biodegradation, two major metabolites were detected: penicilloic acid and phenolic acid. The present study provides a novel method for the biodegradation of PVK using Ochrobactrum tritici strains, which represent promising candidates for the industrial biodegradation of PVK.IMPORTANCE Substantial concentrations of penicillin V potassium (PVK) have been found in the environment, which may pose potential threats to human health and contribute to the emergence of penicillin-resistant bacterial strains. In this study, antibiotic-degrading bacterial strains for PVK were isolated from sludge and characterized. Ochrobactrum tritici was selected for the biodegradation of PVK with high efficiency. To enhance its PVK degradation ability, a whole-cell biodegradation process was established and optimized using Ochrobactrum tritici The degradation rate with 0.5 mg/ml PVK reached 100% within 3 h. The potential biodegradation pathway was also investigated. To the best of our knowledge, the present study provides new insights into the biodegradation of PVK using an Ochrobactrum tritici strain, a promising candidate strain for the industrial biodegradation of β-lactam antibiotics.
Keywords: Ochrobactrum tritici; antibiotic; bacterial residue; biodegradation; biotransformation; penicillin V potassium.
Copyright © 2020 Wang et al.
Figures







References
-
- Goulas A, Livoreil B, Grall N, Benoit P, Couderc-Obert C, Dagot C, Patureau D, Petit F, Laouénan C, Andremont A. 2018. What are the effective solutions to control the dissemination of antibiotic resistance in the environment? A systematic review protocol. Environ Evid 7:3. doi:10.1186/s13750-018-0118-2. - DOI
Publication types
MeSH terms
Substances
Supplementary concepts
LinkOut - more resources
Full Text Sources
Medical