Genome-Wide Association Mapping for Heat Stress Responsive Traits in Field Pea
- PMID: 32192061
- PMCID: PMC7139655
- DOI: 10.3390/ijms21062043
Genome-Wide Association Mapping for Heat Stress Responsive Traits in Field Pea
Abstract
Environmental stress hampers pea productivity. To understand the genetic basis of heat resistance, a genome-wide association study (GWAS) was conducted on six stress responsive traits of physiological and agronomic importance in pea, with an objective to identify the genetic loci associated with these traits. One hundred and thirty-five genetically diverse pea accessions from major pea growing areas of the world were phenotyped in field trials across five environments, under generally ambient (control) and heat stress conditions. Statistical analysis of phenotype indicated significant effects of genotype (G), environment (E), and G × E interaction for all traits. A total of 16,877 known high-quality SNPs were used for association analysis to determine marker-trait associations (MTA). We identified 32 MTAs that were consistent in at least three environments for association with the traits of stress resistance: six for chlorophyll concentration measured by a soil plant analysis development meter; two each for photochemical reflectance index and canopy temperature; seven for reproductive stem length; six for internode length; and nine for pod number. Forty-eight candidate genes were identified within 15 kb distance of these markers. The identified markers and candidate genes have potential for marker-assisted selection towards the development of heat resistant pea cultivars.
Keywords: GWAS; candidate-gene; genetic diversity; genotyping-by-sequencing; heat stress; marker-trait association; pea.
Conflict of interest statement
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Figures
References
-
- Cousin R. Peas (Pisum sativum L.) Field Crop. Res. 1997;53:111–130. doi: 10.1016/S0378-4290(97)00026-9. - DOI
-
- Smýkal P., Aubert G., Burstin J., Coyne C.J., Ellis N.T.H., Flavell A.J., Ford R., Hýbl M., Macas J., Neumann P., et al. Pea (Pisum sativum L.) in the Genomic Era. Agronomy. 2012;2:74–115. doi: 10.3390/agronomy2020074. - DOI
-
- Guilioni L., Wery J., Tardieu F. Heat stress-induced abortion of buds and flowers in pea: Is sensitivity linked to organ age or to relations between reproductive organs? Ann. Bot. 1997;80:159–168. doi: 10.1006/anbo.1997.0425. - DOI
-
- Bueckert R.A., Wagenhoffer S., Hnatowich G., Warkentin T.D. Effect of heat and precipitation on pea yield and reproductive performance in the field. Can. J. Plant. Sci. 2015;95:629–639. doi: 10.4141/cjps-2014-342. - DOI
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
