Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 19;10(1):5042.
doi: 10.1038/s41598-020-61977-1.

Mixtures of prion substrains in natural scrapie cases revealed by ovinised murine models

Affiliations

Mixtures of prion substrains in natural scrapie cases revealed by ovinised murine models

Tomás Barrio et al. Sci Rep. .

Abstract

Phenotypic variability in prion diseases, such as scrapie, is associated to the existence of prion strains, which are different pathogenic prion protein (PrPSc) conformations with distinct pathobiological properties. To faithfully study scrapie strain variability in natural sheep isolates, transgenic mice expressing sheep cellular prion protein (PrPC) are used. In this study, we used two of such models to bioassay 20 scrapie isolates from the Spain-France-Andorra transboundary territory. Animals were intracerebrally inoculated and survival periods, proteinase K-resistant PrP (PrPres) banding patterns, lesion profiles and PrPSc distribution were studied. Inocula showed a remarkable homogeneity on banding patterns, all of them but one showing 19-kDa PrPres. However, a number of isolates caused accumulation of 21-kDa PrPres in TgShp XI. A different subgroup of isolates caused long survival periods and presence of 21-kDa PrPres in Tg338 mice. It seemed that one major 19-kDa prion isoform and two distinct 21-kDa variants coexisted in source inocula, and that they could be separated by bioassay in each transgenic model. The reason why each model favours a specific component of the mixture is unknown, although PrPC expression level may play a role. Our results indicate that coinfection with more than one substrain is more frequent than infection with a single component.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Western blot of inocula sourced from sheep tissues. (A) Inocula from medulla oblongata; (B) inocula from mesenteric lymph node. Note that all but one samples had banding patterns with the non-glycosylated (NG) band at 19 kDa. M: molecular weight marker; kDa: kilodaltons. Notice that cropped images are presented here; for the full image, see Supplementary Figure S3.
Figure 2
Figure 2
Western blot of spinal cord homogenates from second-passage TgShp XI mice experimentally challenged with (A) sheep brain-derived isolates and (B) sheep lymph node-derived isolates. Note that most samples had banding patterns with the non-glycosylated (NG) band at 19 kDa, while those of inocula 3 N, 4 N, 5 N and 7 L were at 21 kDa. M: molecular weight marker; kDa: kilodaltons. Notice that cropped images are presented here; for the full image, see Supplementary Figure S3.
Figure 3
Figure 3
Western blot of spinal cord homogenates from second-passage Tg338 mice experimentally challenged with (A) sheep brain-derived isolates and (B) sheep lymph node-derived isolates. Note that 13/18 samples were clearly positive with non-glycosylated bands at 19 kDa. 5/18 samples differed from this, either being negative (4 L and 5 L) or having NG bands at 21 kDa (2 L, 6 L and 8 L). M: molecular weight marker; kDa: kilodaltons. Notice that cropped images are presented here; for the full image, see Supplementary Figure S3.
Figure 4
Figure 4
Lesion profiles of second-passage TgShp XI mice. Both inocula associated to the 19K phenotype (A) and inocula associated to the 21K-TgShp XI phenotype (B) provoked similarly shaped lesion profiles in TgShp XI mice (C), most of them characterized by peak scores at mesencephalon and thalamus. The brains of all mice dying after the onset of clinical signs in each challenged group were analyzed to plot lesions profiles (usually 6 and never less than 3 animals per group). Mobl: medulla oblongata, Cb: cerebellar cortex, Mes: mesencephalon, Hy: hypothalamus, Th: thalamus, Hp: hippocampus, Sn: septal nuclei, Tc: cortex at the level of thalamus, Fc: frontal cortex. Error bars represent SEM.
Figure 5
Figure 5
Lesion profiles of second-passage Tg338 mice. Inocula associated to the 19K phenotype provoked similar lesion profiles in Tg338 mice, mostly characterized by peaks at medulla oblongata and thalamus (A). However, isolates linked to the 21K-Tg338 phenotype triggered lower and flatter profiles (B,C). The brains of all mice dying after the onset of clinical signs in each challenged group were analyzed to plot lesions profiles (usually 6 and never less than 3 animals per group). Mobl: medulla oblongata, Cb: cerebellar cortex, Mes: mesencephalon, Hy: hypothalamus, Th: thalamus, Hp: hippocampus, Sn: septal nuclei, Tc: cortex at the level of thalamus, Fc: frontal cortex. Error bars represent SEM.
Figure 6
Figure 6
PrPSc distribution in representative brain sections from TgShp XI mice infected with inocula 2 N (A), 3 N (B), 7 L (C) and 8 L (D). Two different trends of PrPSc accumulation were observed on PET-blots: a generalized low-intensity immunostaining (A,B,C), and a localized high-intensity pattern, usually associated with the alveus of hippocampus (B, D, arrowheads), and subependymal areas (D, arrowheads), and which correlated with coarse/coalescing plaque-like deposits on immunostochemistry (E).
Figure 7
Figure 7
PrPSc distribution in representative brain sections from Tg338 mice infected with inocula 1 L (A), 3 L (B), 7 L (C) and 8 L (D,E). A general pattern arose in all examined brain samples consisting of intense staining of brainstem and subcortical areas. Additionally, conspicuous immunostaining was observed in specific structures, including the cingulate gyrus (A,B,E; thick orange arrows), habenular nuclei (A,C; red arrowheads), and the stratum lacunosum-moleculare and the alveus of hippocampus (B,E; thin green arrows). High-intensity staining of the medial amygdaloid nuclei (D,E; blue triangles) was observed in a subset of samples obtained from animals challenged with isolates causing prolonged survival periods and low vacuolization scores.
Figure 8
Figure 8
Unicentric (A to C), florid (D to F) and amorphous perivascular plaques (G to L) in brain of second-passage Tg338 mice infected with inocula 6 L and 8 L. Haematoxilin-eosin staining (A,D,G,J), immunohistochemistry with anti-PrP mAb SAF84 (B,E,H,K) and Congo red staining that proves the amyloid nature of the plaques (C,F,I,L).

References

    1. Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216:136–144. doi: 10.1126/science.6801762. - DOI - PubMed
    1. Oesch B, et al. A cellular gene encodes scrapie PrP 27-30 protein. Cell. 1985;40:735–746. doi: 10.1016/0092-8674(85)90333-2. - DOI - PubMed
    1. Stahl N, Borchelt DR, Hsiao K, Prusiner SB. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell. 1987;51:229–240. doi: 10.1016/0092-8674(87)90150-4. - DOI - PubMed
    1. Prusiner SB. Molecular biology of prion diseases. Science. 1991;252:1515–1522. doi: 10.1126/science.1675487. - DOI - PubMed
    1. Prusiner SB. Prions. Proc. Natl. Acad. Sci. USA. 1998;95:13363–13383. doi: 10.1073/pnas.95.23.13363. - DOI - PMC - PubMed

Publication types