Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 3:11:151.
doi: 10.3389/fgene.2020.00151. eCollection 2020.

Preparing Medical Specialists for Genomic Medicine: Continuing Education Should Include Opportunities for Experiential Learning

Affiliations

Preparing Medical Specialists for Genomic Medicine: Continuing Education Should Include Opportunities for Experiential Learning

Belinda J McClaren et al. Front Genet. .

Abstract

With the demand for genomic investigations increasing, medical specialists will need to, and are beginning to, practice genomic medicine. The need for medical specialists from diverse specialties to be ready to appropriately practice genomic medicine is widely recognised, but existing studies focus on single specialties or clinical settings. We explored continuing education needs in genomic medicine of a wide range of medical specialists (excluding genetic specialists) from across Australia. Interviews were conducted with 86 medical specialists in Australia from diverse medical specialties. Inductive content analysis categorized participants by career stage and genomics experience. Themes related to education needs were identified through constant comparison and discussion between authors of emerging concepts. Our findings show that participants believe that experiential learning in genomic medicine is necessary to develop the confidence and skills needed for clinical care. The main themes reported are: tailoring of education to the specialty and the individual; peer interactions contextualizes knowledge; experience will aid in developing confidence and skills. In fact, avenues of gaining experience may result in increased engagement with continuing education in genomic medicine as specialists are exposed to relevant applications in their clinical practice. Participants affirmed the need for continuing education in genomic medicine but identified that it would need to be tailored to the specialty and the individual: one size does not fit all, so a multifaceted approached is needed. Participants infrequently attended formal continuing education in genomic medicine. More commonly, they reported experiential learning by observation, case-review or interacting with a "genomics champion" in their specialty, which contextualized their knowledge. Medical specialists anticipate that genomic medicine will become part of their practice which could lessen demand on the specialist genetic workforce. They expect to look to experts within their own medical specialty who have gained genomics expertise for specific and contextualized support as they develop the skills and confidence to practice genomic medicine. These findings highlight the need to include opportunities for experiential learning in continuing education. Concepts identified in these interviews can be tested with a larger sample of medical specialists to ascertain representativeness.

Keywords: experiential learning; genomic education; genomic medicine; medical specialist; qualitative needs assessment; workforce.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Australian Genomics Health Alliance: Workforce & Education research program design. The Workforce & Education program of Australian Genomics seeks to identify gaps and opportunities around continuing education of health professionals to support the practice of genomic medicine. To achieve this, our research program has three work streams around education and clinical practice: mapping the current landscape; identifying needs and future preferences; and ensuring effective education through evaluation. The present study is shown in grey and has only included medical specialists, defined as “doctors specialized in a field other than general/family practice or clinical/medical genetics” (Crellin et al., 2019, pg 1–2). The data collection methods used in the program are: adesktop audit; bmixed methods (qualitative and quantitative); cqualitative interviews; dquantitative survey; eworkshop/meeting. Outputs from the program to date are: e(Nisselle et al. 2019b) f(McClaren et al., 2018); g(Janinski et al., 2018); h(Nisselle et al., 2019a); iFirst meeting held August 2018, Sydney; j(Stark et al., 2019b). Participants groups represented in the studies within this program of research are: medical specialists (3, 9–16), genetic counselors (4, 11–15), clinical geneticists (2, 4, 11–15), bioinformaticians and medical scientists (11–15), genomic education providers (2, 12–15), general practitioners (5, 6, 12–15), patients or parents of patients (7, 15), system influencers and policy makers (8), oncologists (10), community practitioners (pharmacists, nutritionists, private practice genetic counselors (6).
Figure 2
Figure 2
A summary of the participant-described approaches to education and learning that can prepare a medical specialist to practice genomic medicine. Formal sources of education, such as structured programs, provide knowledge that is then contextualized through peer-to-peer interactions and opportunities for experiential learning; each of these can build upon each other although are not necessarily equal in quality and quantity. Defining preparedness is challenging and may vary for different types of specialists (Vassy et al., 2015); we use this term to encompass knowledge, attitude, skills and confidence (Crellin et al., 2019). aThese activities are ones in which medical specialists would receive recognition from their relevant medical College, such as “points,” for having completed the educational activity.

Similar articles

Cited by

References

    1. Australian Government Department of Health (2017). National Health Genomics Policy Framework 2018-2021 (Canberra, ACT: Australian Health Ministers’ Advisory Council; ).
    1. Bowdin S., Gilbert A., Bedoukian E., Carew C., Adam M. P., Belmont J., et al. (2016). Recommendations for the integration of genomics into clinical practice. Genet. Med. 18, 1075–1084. 10.1038/gim.2016.17 - DOI - PMC - PubMed
    1. Burke S., Stone A., Bedward J., Thomas H., Farndon P. (2006). A “neglected part of the curriculum” or “of limited use”? views on genetics training by nongenetics medical trainees and implications for delivery. Genet. Med. 8, 109–115. 10.1097/01.gim.0000200159.19920.b5 - DOI - PubMed
    1. Burton H., Hall A., Kroese M., Raza S. (2017). Genomics in mainstream clinical pathways (Cambridge, UK: PHG Foundation; ).
    1. Burton H. (2011). “Genetics and mainstream medicine”. (Cambridge, UK: PHG Foundation; ).

LinkOut - more resources