Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr 15;12(15):17583-17591.
doi: 10.1021/acsami.0c01990. Epub 2020 Mar 31.

An Ultrastable Na-Zn Solid-State Hybrid Battery Enabled by a Robust Dual-Cross-linked Polymer Electrolyte

Affiliations

An Ultrastable Na-Zn Solid-State Hybrid Battery Enabled by a Robust Dual-Cross-linked Polymer Electrolyte

Jiaqi Huang et al. ACS Appl Mater Interfaces. .

Abstract

This work proposes a dual-cross-linked gel solid electrolyte (SE), here defined as Zn-re-inforced sodium alginate-polyacrylamide SE (Zn-reinforced SA-PAM SE), in which Na+ and Zn2+ coexist. The SE shows a high conductivity of 19.74 mS cm-1. Compared to the pure PAM gel, the tensile strength and compressive strength of Zn-reinforced SA-PAM SE are significantly enhanced to be 674.28 kPa and 16.29 MPa, respectively, because of the strengthening mechanism of Zn2+ cross-linked SA. Based on such a robust electrolyte, a novel hybrid cell is developed by involving Na0.5FeFe(CN)6-carbon nanotube composites (PB@CNT) as the Na+ intercalation-type cathode and metallic Zn as the plating anode. The hybrid cell shows an extremely high stability for 10,000 cycles with a record little capacity loss of 0.0027% per cycle, as Zn-reinforced SA-PAM SE successfully inhibits free water molecules from occupying low-spinning metallic sites (Fe-C) in Na0.5FeFe(CN)6. Ex situ X-ray photoelectron spectroscopy reveals that the dissolution of Na0.5FeFe(CN)6 is highly reduced by 79.5%. It is further noted that the corrosion and dendrites at the Zn2+/Zn plating anode are greatly hindered for the robust electrolyte. This work gives a pathway for the development of new aqueous ion batteries.

Keywords: Prussian blue nanocomposite cathode; Zn anode; aqueous battery; dendrite suppression; dual-cross-linked gel solid electrolyte; hybrid Na−Zn battery.

PubMed Disclaimer

LinkOut - more resources