Casein Ingestion Does Not Increase Muscle Connective Tissue Protein Synthesis Rates
- PMID: 32195768
- PMCID: PMC7431152
- DOI: 10.1249/MSS.0000000000002337
Casein Ingestion Does Not Increase Muscle Connective Tissue Protein Synthesis Rates
Abstract
Purpose: This study aimed to assess the effect of dietary protein ingestion on intramuscular connective tissue protein synthesis rates during overnight recovery from a single bout of resistance exercise.
Methods: Thirty-six healthy, young males were randomly assigned to one of three treatments. One group ingested 30 g intrinsically L-[1-C]-phenylalanine-labeled casein protein before sleep (PRO, n = 12). The other two groups performed a bout of resistance exercise in the evening and ingested either placebo (EX, n = 12) or 30 g intrinsically L-[1-C]-phenylalanine-labeled casein protein before sleep (EX + PRO, n = 12). Continuous intravenous infusions of L-[ring-H5]-phenylalanine and L-[1-C]-leucine were applied, and blood and muscle tissue samples were collected to assess connective tissue protein synthesis rates and dietary protein-derived amino acid incorporation in the connective tissue protein fraction.
Results: Resistance exercise resulted in higher connective tissue protein synthesis rates when compared with rest (0.086 ± 0.017%·h [EX] and 0.080 ± 0.019%·h [EX + PRO] vs 0.059 ± 0.016%·h [PRO]; P < 0.05). Postexercise casein protein ingestion did not result in higher connective tissue protein synthesis rates when compared with postexercise placebo ingestion (P = 1.00). Dietary protein-derived amino acids were incorporated into the connective tissue protein fraction at rest, and to a greater extent during recovery from exercise (P = 0.002).
Conclusion: Resistance exercise increases intramuscular connective tissue protein synthesis rates during overnight sleep, with no further effect of postexercise protein ingestion. However, dietary protein-derived amino acids are being used as precursors to support de novo connective tissue protein synthesis.
Figures






References
-
- Koopman R, van Loon LJ. Aging, exercise, and muscle protein metabolism. Journal Appl Physiol. 2009;106(6):2040–8. - PubMed
-
- Burd NA, Gorissen SH, van Vliet S, Snijders T, van Loon LJ. Differences in postprandial protein handling after beef compared with milk ingestion during postexercise recovery: a randomized controlled trial. Am J Clin Nutr. 2015;102(4):828–36. - PubMed
-
- Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol. 1995;268(3 Pt 1):E514–20. - PubMed
-
- Chesley A, MacDougall JD, Tarnopolsky MA, Atkinson SA, Smith K. Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol (1985). 1992;73(4):1383–8. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources