Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr 15;142(15):7116-7127.
doi: 10.1021/jacs.0c01349. Epub 2020 Apr 1.

Metastable Rock Salt Oxide-Mediated Synthesis of High-Density Dual-Protected M@NC for Long-Life Rechargeable Zinc-Air Batteries with Record Power Density

Affiliations

Metastable Rock Salt Oxide-Mediated Synthesis of High-Density Dual-Protected M@NC for Long-Life Rechargeable Zinc-Air Batteries with Record Power Density

Tang Tang et al. J Am Chem Soc. .

Abstract

Creating high-density durable bifunctional active sites in an air electrode is essential but still challenging for a long-life rechargeable zinc-air battery with appealing power density. Herein, we discover a general strategy mediated by metastable rock salt oxides for achieving high-density well-defined transition-metal nanocrystals encapsulated in N-doped carbon shells (M@NC) which are anchored on a substrate by a porous carbon network as highly active and durable bifunctional catalytic sites. Small-size (15 ± 5 nm) well-dispersed Co2Fe1@NC in a high density (metal loading up to 54.0 wt %) offers the zinc-air battery a record power density of 423.7 mW cm-2. The dual protection from the complete graphitic carbon shells and the anchoring of the outer carbon network make Co2Fe1@NC chemically and mechanically durable, giving the battery a long cycling life. Systematic in-situ temperature-dependent characterizations as well as DFT modeling rationalize the rock salt oxide-mediated process and its indispensable role in achieving high-density nanosized M@NC. These findings open up opportunities for designing efficient electrocatalysts for high-performance Zn-air batteries and diverse energy devices.

PubMed Disclaimer

LinkOut - more resources