Live Feeds Used in the Larval Culture of Red Cusk Eel, Genypterus chilensis, Carry High Levels of Antimicrobial-Resistant Bacteria and Antibiotic-Resistance Genes (ARGs)
- PMID: 32197370
- PMCID: PMC7142716
- DOI: 10.3390/ani10030505
Live Feeds Used in the Larval Culture of Red Cusk Eel, Genypterus chilensis, Carry High Levels of Antimicrobial-Resistant Bacteria and Antibiotic-Resistance Genes (ARGs)
Abstract
The culture of red cusk eel Genypterus chilensis is currently considered a priority for Chilean aquaculture but low larval survival rates have prompted the need for the continuous use of antibacterials. The main aim of this study was to evaluate the role of live feed as a source of antibacterial-resistant bacteria in a commercial culture of G. chilensis. Samples of rotifer and Artemia cultures used as live feed were collected during the larval growth period and culturable bacterial counts were performed using a spread plate method. Rotifer and Artemia cultures exhibited high levels of resistant bacteria (8.03 × 104 to 1.79 × 107 CFU/g and 1.47 × 106 to 3.50 × 108 CFU/g, respectively). Sixty-five florfenicol-resistant isolates were identified as Vibrio (81.5%) and Pseudoalteromonas (15.4%) using 16S rRNA gene sequence analysis. A high incidence of resistance to streptomycin (93.8%), oxytetracycline (89.2%), co-trimoxazole (84.6%), and kanamycin (73.8%) was exhibited by resistant isolates. A high proportion of isolates (76.9%) carried the florfenicol-resistance encoding genes floR and fexA, as well as plasmid DNA (75.0%). The high prevalence of multiresistant bacteria in live feed increases the incidence of the resistant microbiota in reared fish larvae, thus proper monitoring and management strategies for live feed cultures appear to be a priority for preventing future therapy failures in fish larval cultures.
Keywords: Artemia; Genypterus chilensis; fexA; floR; florfenicol; live feed; red cusk eel; resistant bacteria; rotifer; vibrios.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



Similar articles
-
Red Cusk-Eel (Genypterus chilensis) Gut Microbiota Description of Wild and Aquaculture Specimens.Microorganisms. 2022 Jan 4;10(1):105. doi: 10.3390/microorganisms10010105. Microorganisms. 2022. PMID: 35056554 Free PMC article.
-
Identification and Evaluation of Long Noncoding RNAs in Response to Handling Stress in Red Cusk-Eel (Genypterus chilensis) via RNA-seq.Mar Biotechnol (NY). 2020 Feb;22(1):94-108. doi: 10.1007/s10126-019-09934-6. Epub 2019 Nov 20. Mar Biotechnol (NY). 2020. PMID: 31748906
-
Scallop larvae hatcheries as source of bacteria carrying genes encoding for non-enzymatic phenicol resistance.Mar Pollut Bull. 2015 Jun 15;95(1):173-82. doi: 10.1016/j.marpolbul.2015.04.026. Epub 2015 May 5. Mar Pollut Bull. 2015. PMID: 25956439
-
Role of shellfish hatchery as a reservoir of antimicrobial resistant bacteria.Mar Pollut Bull. 2013 Sep 15;74(1):334-43. doi: 10.1016/j.marpolbul.2013.06.032. Epub 2013 Jul 21. Mar Pollut Bull. 2013. PMID: 23880028
-
Adaptation and potential culture of wild Amphipods and Mysids as potential live feed in aquaculture: a review.PeerJ. 2024 Mar 29;12:e17092. doi: 10.7717/peerj.17092. eCollection 2024. PeerJ. 2024. PMID: 38563012 Free PMC article. Review.
Cited by
-
Occurrence of Antimicrobial-Resistant Bacteria in Intestinal Contents of Wild Marine Fish in Chile.Antibiotics (Basel). 2024 Apr 5;13(4):332. doi: 10.3390/antibiotics13040332. Antibiotics (Basel). 2024. PMID: 38667008 Free PMC article.
-
Lysin and Lytic Phages Reduce Vibrio Counts in Live Feed and Fish Larvae.Microorganisms. 2024 Apr 30;12(5):904. doi: 10.3390/microorganisms12050904. Microorganisms. 2024. PMID: 38792735 Free PMC article.
-
Sole microbiome progression in a hatchery life cycle, from egg to juvenile.Front Microbiol. 2023 Jun 26;14:1188876. doi: 10.3389/fmicb.2023.1188876. eCollection 2023. Front Microbiol. 2023. PMID: 37434707 Free PMC article.
-
Microbial Interactions in Rearing Systems for Marine Fish Larvae.Microorganisms. 2025 Feb 27;13(3):539. doi: 10.3390/microorganisms13030539. Microorganisms. 2025. PMID: 40142430 Free PMC article. Review.
-
Red Cusk-Eel (Genypterus chilensis) Gut Microbiota Description of Wild and Aquaculture Specimens.Microorganisms. 2022 Jan 4;10(1):105. doi: 10.3390/microorganisms10010105. Microorganisms. 2022. PMID: 35056554 Free PMC article.
References
-
- Jara-Seguel P., Ubilla A., Estrada J.M., Ramírez D., Valdebenito I. Nuclear DNA content in the red conger eel Genypterus chilensis (Guichenot, 1881) (Actinopterygii: Ophidiidae) Gayana. 2011;75:198–200. doi: 10.4067/S0717-65382011000200010. - DOI
-
- Córdova-Alarcón V.R., Araneda C., Jilberto F., Magnolfi P., Toledo M.I., Lam N. Genetic Diversity and Population Structure of Genypterus chilensis, a Commercial Benthic Marine Species of the South Pacific. Front. Mar. Sci. 2019;6:748. doi: 10.3389/fmars.2019.00748. - DOI
-
- Levican A., Avendaño-Herrera R. Bacteria associated with mass mortality of post-larvae of red conger eel (Genypterus chilensis) cultured in a Chilean farm. Bull. Eur. Assoc. Fish Pathol. 2015;35:162–169.
-
- Levican A., Lasa A., Irgang R., Romalde J.L., Poblete-Morales M., Avendaño-Herrera R. Isolation of Vibrio tapetis from two native fish species (Genypterus chilensis and Paralichthys adspersus) reared in Chile and description of Vibrio tapetis subsp. quintayensis subsp. nov. Int. J. Syst. Evol. Microbiol. 2017;67:716–723. doi: 10.1099/ijsem.0.001705. - DOI - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources