Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Apr;157(1):31-41.
doi: 10.1111/jnc.15012. Epub 2020 Jul 3.

GABAergic mechanisms in the suprachiasmatic nucleus that influence circadian rhythm

Affiliations
Review

GABAergic mechanisms in the suprachiasmatic nucleus that influence circadian rhythm

Daisuke Ono et al. J Neurochem. 2021 Apr.

Abstract

The mammalian central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN contains multiple circadian oscillators which synchronize with each other via several neurotransmitters. Importantly, an inhibitory neurotransmitter, γ-amino butyric acid (GABA), is expressed in almost all SCN neurons. In this review, we discuss how GABA influences circadian rhythms in the SCN. Excitatory and inhibitory effects of GABA may depend on intracellular Cl- concentration, in which several factors such as day-length, time of day, development, and region in the SCN may be involved. GABA also mediates oscillatory coupling of the circadian rhythms in the SCN. Recent genetic approaches reveal that GABA refines circadian output rhythms, but not circadian oscillations in the SCN. Since several efferent projections of the SCN have been suggested, GABA might work downstream of neuronal pathways from the SCN which regulate the temporal order of physiology and behavior.

Keywords: GABA; circadian rhythm; neuronal network; suprachiasmatic nucleus.

PubMed Disclaimer

References

REFERENCES

    1. Abrahamson, E. E., & Moore, R. Y. (2001). Suprachiasmatic nucleus in the mouse: Retinal innervation, intrinsic organization and efferent projections. Brain Research, 916, 172-191.
    1. Albus, H., Vansteensel, M. J., Michel, S., Block, G. D., & Meijer, J. H. (2005). A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Current Biology, 15, 886-893.
    1. Araque, A., Carmignoto, G., Haydon, P. G., Oliet, S. H., Robitaille, R., & Volterra, A. (2014). Gliotransmitters travel in time and space. Neuron, 81, 728-739.
    1. Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J., & Herzog, E. D. (2005). Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nature Neuroscience, 8, 476-483.
    1. Aton, S. J., Huettner, J. E., Straume, M., & Herzog, E. D. (2006). GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons. Proceedings of the National Academy of Sciences of the United States of America, 103, 19188-19193.

Publication types

Substances

LinkOut - more resources