Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May:184:109349.
doi: 10.1016/j.envres.2020.109349. Epub 2020 Mar 6.

Objective ranges of soil-to-dust transfer coefficients for lead-impacted sites

Affiliations
Free article

Objective ranges of soil-to-dust transfer coefficients for lead-impacted sites

J W Tu et al. Environ Res. 2020 May.
Free article

Abstract

Residential yard soil and indoor dust datasets from eight communities near historical mining, smelting, and refining operations were used to quantify soil track-in, an important factor in evaluating indoor exposures to soil metals and to set residential soil cleanup levels. Regression analyses were used to derive slopes that represent mass soil-to-dust transfer coefficients or MSDs. Lead concentration data were available for all datasets. Arsenic data were available for six of the eight datasets. Cadmium and zinc data were available for one dataset, allowing limited comparison of MSDs for lead with other metals. Covariates that could indicate potential indoor sources of metals, such as house age and indoor heating source, were examined by multivariate regression analysis when available (three datasets). Covariates that could affect soil track-in, such as the amount of bare soil in the yard or having pets, were examined by stratified linear regression analysis when available (two datasets). Most of the R-squared values for lead, cadmium and zinc indicate a good to moderate fit (≥0.25), but for arsenic most indicate a poor fit (<0.25). Significant MSDs for models with a good to moderate fit range from 0.14 to 0.47 for lead, and 0.12 to 0.43 for the other metals (arsenic, cadmium, and zinc). The treatment of outliers was a significant methodological factor affecting the slope of the regressions. Substantial variability is expected among soils at residences due to both physical characteristics of each property and the ways in which residents interact with their home. Survey data providing information on various factors affecting soil track-in help to refine MSD estimates. For three of the datasets, covariate data were available that improved model fit by multivariate or stratified regression analysis for lead. When multivariate or stratified regression analyses were performed, the estimated MSD varied as little as <1% to as great as 200% depending on the dataset, but all estimates were below 0.4. Notably, the MSDs were lowest for the three datasets with the highest soil lead concentrations, i.e., those with average soil lead concentrations greater than 300 mg/kg after outlier removal. For five of the six datasets that had both arsenic and lead sampled, arsenic MSDs were much less than the lead MSDs; however, only two of the sites' arsenic models had significant MSDs and adequate fit. Cadmium and zinc were only included in one dataset, limiting our ability to draw any conclusions from comparison to those MSDs. The results of our study are consistent with prior studies suggesting that MSDs for metals without internal sources are 0.3-0.4, and application of MSDs in that range will provide more reliable exposure estimates than the 0.7 default value used by the United States Environmental Protection Agency in the Integrated Exposure Uptake Biokinetic (IEUBK) Model.

Keywords: Arsenic; Indoor dust; Lead; Metals; Mining and smelting sites; Soil.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Ramboll US Corporation provides consulting services to private and public organizations on contaminated site investigation and health risk assessment issues. Ramboll received a grant administered by the RCRA Corrective Action Project (RCAP) on behalf of BP, Chevron, Chemours, Freeport Minerals Corporation, The HollyFrontier Companies, and Teck American Inc. for the conduct of this study. The study was designed and fully executed by the authors. Scientists at several of the funding companies provided helpful technical comments on a draft of this manuscript.

Publication types

LinkOut - more resources