Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr;4(4):639-651.
doi: 10.1038/s41559-020-1137-2. Epub 2020 Mar 16.

The evolutionary origin of visual and somatosensory representation in the vertebrate pallium

Affiliations

The evolutionary origin of visual and somatosensory representation in the vertebrate pallium

Shreyas M Suryanarayana et al. Nat Ecol Evol. 2020 Apr.

Abstract

Amniotes, such as mammals and reptiles, have vision and other senses represented in the pallium, whereas anamniotes, such as amphibians, fish and cyclostomes (including lampreys), which diverged much earlier, were historically thought to process olfactory information predominantly or even exclusively in the pallium. Here, we show that there is a separate visual area with retinotopic representation, and that somatosensory information from the head and trunk is represented in an adjacent area in the lamprey pallial cortex (lateral pallium). These cortical sensory areas flank a non-primary-sensory motor area. Both vision and somatosensation are relayed via the thalamus. These findings suggest that the basic sensorimotor representation of the mammalian neocortex, as well as the sensory thalamocortical relay, had already evolved in the last common ancestor of cyclostomes and gnathostomes around 560 million years ago.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Kumar, S. & Hedges, S. B. A molecular timescale for vertebrate evolution. Nature 392, 917–920 (1998). - DOI - PubMed - PMC
    1. Suzuki, D. G. & Grillner, S. The stepwise development of the lamprey visual system and its evolutionary implications. Biol. Rev. Camb. Phil. Soc. 93, 1461–1477 (2018). - DOI
    1. Suzuki, D. G., Perez-Fernandez, J., Wibble, T., Kardamakis, A. A. & Grillner, S. The role of the optic tectum for visually evoked orienting and evasive movements. Proc. Natl Acad. Sci. USA 116, 15272–15281 (2019). - DOI - PubMed - PMC
    1. Woolsey, C. N. in Biological and Biochemical Bases of Behaviour (eds Harlow, H. F. & Woolsey, C. N.) 63–81 (Univ. Wisconsin Press, 1958).
    1. Dugas-Ford, J. & Ragsdale, C. W. Levels of homology and the problem of neocortex. Annu. Rev. Neurosci. 38, 351–368 (2015). - DOI - PubMed - PMC

Publication types

LinkOut - more resources