Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May:138:105659.
doi: 10.1016/j.envint.2020.105659. Epub 2020 Mar 20.

Prenatal NO2 exposure and neurodevelopmental disorders in offspring mice: Transcriptomics reveals sex-dependent changes in cerebral gene expression

Affiliations
Free article

Prenatal NO2 exposure and neurodevelopmental disorders in offspring mice: Transcriptomics reveals sex-dependent changes in cerebral gene expression

Wei Yan et al. Environ Int. 2020 May.
Free article

Abstract

Background: Early-life exposure to nitrogen dioxide (NO2) is associated with an increased risk of developing a neurodevelopmental disorder during childhood or later in life.

Objectives: We investigated whether prenatal NO2 inhalation causes neurodevelopmental abnormalities and cognitive deficits in weanling offspring without subsequent postnatal NO2 exposure and how this prenatal exposure contributes to postnatal consequences.

Methods: Pregnant C57BL/6 mice were exposed to air or NO2 (2.5 ppm, 5 h/day) throughout gestation, and the offspring were sacrificed on postnatal days (PNDs) 1, 7, 14 and 21. We determined the mRNA profiles of different postnatal developmental windows, detected the long noncoding RNA (lncRNA) profiles and cognitive function in weanling offspring, and analyzed the effects of hub lncRNAs on differentially expressed genes (DEGs).

Results: Prenatal NO2 inhalation significantly impaired cognitive function in the weanling male, but not female, offspring. The male-specific response was coupled with abnormal neuropathologies and transcriptional profiles in the cortex during different postnatal developmental windows. Consistently, Gene Ontology (GO) analysis of the DEGs revealed persistent disruptions in neurodevelopment-associated biological processes and cellular components in the male offspring, and Apolipoprotein E (ApoE) was one of key factors contributing to prenatal exposure-induced male-specific neurological dysfunction. In addition, distinct sex-dependent lncRNA expression was identified in the weanling offspring, and metastasis-associated lung adenocarcinoma transcript 1 (Malat1) acted as a hub lncRNA and was coexpressed with most coding genes in the lncRNA-mRNA coexpressed pairs in the male offspring. Importantly, lncRNA Malat1 expression was elevated, and Malat1 modulated ApoE expression through NF-κB activation during this process.

Conclusions: Prenatal NO2 exposure is related to sex-dependent neurocognitive deficits and transcriptomic profile changes in the cortices of the prenatally exposed offspring. Male-specific neurological dysfunction is associated with the constant alteration of genes during postnatal neurodevelopment and their transcriptional modulation by hub lncRNAs.

Keywords: Apolipoprotein E (ApoE); Metastasis-associated lung adenocarcinoma transcript 1 (Malat1); Prenatal NO(2) exposure; Spatial learning and memory; mRNA and long noncoding (lncRNA) expression profiles.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources