Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun:328:113287.
doi: 10.1016/j.expneurol.2020.113287. Epub 2020 Mar 20.

Safinamide's potential in treating nondystrophic myotonias: Inhibition of skeletal muscle voltage-gated sodium channels and skeletal muscle hyperexcitability in vitro and in vivo

Affiliations

Safinamide's potential in treating nondystrophic myotonias: Inhibition of skeletal muscle voltage-gated sodium channels and skeletal muscle hyperexcitability in vitro and in vivo

Jean-François Desaphy et al. Exp Neurol. 2020 Jun.

Abstract

The antiarrhythmic sodium-channel blocker mexiletine is used to treat patients with myotonia. However, around 30% of patients do not benefit from mexiletine due to poor tolerability or suboptimal response. Safinamide is an add-on therapy to levodopa for Parkinson's disease. In addition to MAOB inhibition, safinamide inhibits neuronal sodium channels, conferring anticonvulsant activity in models of epilepsy. Here, we investigated the effects of safinamide on skeletal muscle hNav1.4 sodium channels and in models of myotonia, in-vitro and in-vivo. Using patch-clamp, we showed that safinamide reversibly inhibited sodium currents in HEK293T cells transfected with hNav1.4. At the holding potential (hp) of -120 mV, the half-maximum inhibitory concentrations (IC50) were 160 and 33 μM at stimulation frequencies of 0.1 and 10 Hz, respectively. The calculated affinity constants of safinamide were dependent on channel state: 420 μM for closed channels and 9 μM for fast-inactivated channels. The p.F1586C mutation in hNav1.4 greatly impaired safinamide inhibition, suggesting that the drug binds to the local anesthetic receptor site in the channel pore. In a condition mimicking myotonia, i.e. hp. of -90 mV and 50-Hz stimulation, safinamide inhibited INa with an IC50 of 6 μM, being two-fold more potent than mexiletine. Using the two-intracellular microelectrodes current-clamp method, action potential firing was recorded in vitro in rat skeletal muscle fibers in presence of the chloride channel blocker, 9-anthracene carboxylic acid (9-AC), to increase excitability. Safinamide counteracted muscle fiber hyperexcitability with an IC50 of 13 μM. In vivo, oral safinamide was tested in the rat model of myotonia. In this model, intraperitoneal injection of 9-AC greatly increased the time of righting reflex (TRR) due to development of muscle stiffness. Safinamide counteracted 9-AC induced TRR increase with an ED50 of 1.2 mg/kg, which is 7 times lower than that previously determined for mexiletine. In conclusion, safinamide is a potent voltage and frequency dependent blocker of skeletal muscle sodium channels. Accordingly, the drug was able to counteract abnormal muscle hyperexcitability induced by 9-AC, both in vitro and in vivo. Thus, this study suggests that safinamide may have potential in treating myotonia and warrants further preclinical and human studies to fully evaluate this possibility.

Keywords: Current-clamp; In vivo model; Muscle excitability; Myotonia; Patch-clamp; Safinamide; Voltage-gated sodium channels.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest Charlotte Keywood, Elsa Melloni, Gloria Padoani, Silvia Vailati are employees of Zambon S.p.A. and Carla Caccia is a consultant of Zambon S.p.A. The International patent application PCT/EP2019/063733 entitled “Safinamide for treating myotonia” was filed on May 28, 2019 in the name of Zambon S.p.A. Designated inventors are Desaphy J.F., Pierno S., Conte D., Melloni E., Vailati S., Padoani G., and Caccia C.

Similar articles

Cited by

Publication types

Supplementary concepts

LinkOut - more resources