Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 20:722:137949.
doi: 10.1016/j.scitotenv.2020.137949. Epub 2020 Mar 14.

Phosphorous recovery from a novel recirculating aquaculture system followed by its sustainable reuse as a fertilizer

Affiliations

Phosphorous recovery from a novel recirculating aquaculture system followed by its sustainable reuse as a fertilizer

Uri Yogev et al. Sci Total Environ. .

Abstract

Phosphorus (P) is an essential element for life that is introduced through feed in modern aquaculture-the fastest growing food production sector. P can also be a source of environmental contamination and eutrophication if mistreated. Fish assimilate only 20-40% of the applied P; the rest is released into the water. The goals of this research were to study the fate of P in a novel intensive near-zero discharge (<1%) recirculating aquaculture system (RAS). We also tested means to recover and reuse the removed P. Water, sludge and the microbial communities in the different treatment units of the system were analyzed. The treated sludge was tested as a potential substitute for P fertilization in a planter experiment. Of the applied P, 29.5% was recovered by fish, 69.8% was found in the fish sludge and 3.8% was released into the water as soluble reactive P. The P concentration in the fish tank remained stable, likely due to its uptake by denitrifying polyphosphate-accumulating organisms and its precipitation in the RAS's anaerobic reactor. Thus, only 1.5% of the applied P was discharged as effluent, and 69% recovered. The dominant minerals were from the apatite group, followed by the struvite family. Differences in mineral abundance between thermodynamic prediction and actual findings were most probably due to biomineralization by bacteria. Similar plant biomass was recorded for the commercial and digested-sludge fertilization treatments. Biological P removal and recovery from RAS was successfully studied and demonstrated.

Keywords: Biomineralization; Denitrification; Phosphorus recovery; Polyphosphate-accumulating organisms; Recirculating aquaculture systems; Upflow anaerobic sludge blanket.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources