Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 1;1862(7):183281.
doi: 10.1016/j.bbamem.2020.183281. Epub 2020 Mar 21.

A comparison of SMA (styrene maleic acid) and DIBMA (di-isobutylene maleic acid) for membrane protein purification

Affiliations
Free article

A comparison of SMA (styrene maleic acid) and DIBMA (di-isobutylene maleic acid) for membrane protein purification

Aiman A Gulamhussein et al. Biochim Biophys Acta Biomembr. .
Free article

Abstract

The use of styrene maleic acid co-polymer (SMA) for membrane protein extraction and purification has grown in recent years. SMA inserts in the membrane and assembles into small discs of bilayer encircled by polymer, termed SMA lipid particles (SMALPs). This allows purification of membrane proteins whilst maintaining their lipid bilayer environment. SMALPs offer several improvements over conventional detergent approaches, however there are limitations, most notably a sensitivity to low pH and divalent cations. Recently it was shown that the aliphatic diisobutylene-maleic acid (DIBMA) copolymer, was also able to directly solubilise membranes forming DIBMALPs (DIBMA lipid particles), and that this polymer overcame some of the limitations of SMA. In this study the ability of DIBMA to solubilise and purify functional membrane proteins has been compared to SMA. It was found that DIBMA is able to solubilise several different membrane proteins from different expression systems, however for some proteins it gives a lower yield and lower degree of purity than SMA. DIBMA extracted G protein-coupled receptors retain ligand- and G protein-binding. DIBMALPS are larger than SMALPs and display a decreased sensitivity to magnesium. However the stability of DIBMALPs appears to be lower than SMALPs. The lower purity and lower stability are likely linked to the larger size of the DIBMALP particle. However, this also offers a potentially less rigid lipid environment which may be more amenable to protein dynamics. Therefore the optimal choice of polymer will depend on which features of a protein are to be investigated.

Keywords: ABC transporter; DIBMALP; GPCR; Membrane protein; SMALP.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources