Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 26;21(1):80.
doi: 10.1186/s13059-020-01997-2.

Characterisation of genetic regulatory effects for osteoporosis risk variants in human osteoclasts

Affiliations

Characterisation of genetic regulatory effects for osteoporosis risk variants in human osteoclasts

Benjamin H Mullin et al. Genome Biol. .

Abstract

Background: Osteoporosis is a complex disease with a strong genetic contribution. A recently published genome-wide association study (GWAS) for estimated bone mineral density (eBMD) identified 1103 independent genome-wide significant association signals. Most of these variants are non-coding, suggesting that regulatory effects may drive many of the associations. To identify genes with a role in osteoporosis, we integrate the eBMD GWAS association results with those from our previous osteoclast expression quantitative trait locus (eQTL) dataset.

Results: We identify sixty-nine significant cis-eQTL effects for eBMD GWAS variants after correction for multiple testing. We detect co-localisation of eBMD GWAS and osteoclast eQTL association signals for 21 of the 69 loci, implicating a number of genes including CCR5, ZBTB38, CPE, GNA12, RIPK3, IQGAP1 and FLCN. Summary-data-based Mendelian Randomisation analysis of the eBMD GWAS and osteoclast eQTL datasets identifies significant associations for 53 genes, with TULP4 presenting as a strong candidate for pleiotropic effects on eBMD and gene expression in osteoclasts. By performing analysis using the GARFIELD software, we demonstrate significant enrichment of osteoporosis risk variants among high-confidence osteoclast eQTL across multiple GWAS P value thresholds. Mice lacking one of the genes of interest, the apoptosis/necroptosis gene RIPK3, show disturbed bone micro-architecture and increased osteoclast number, highlighting a new biological pathway relevant to osteoporosis.

Conclusion: We utilise a unique osteoclast eQTL dataset to identify a number of potential effector genes for osteoporosis risk variants, which will help focus functional studies in this area.

Keywords: BMD; FBN2; Fracture; GWAS; Osteoclast; Osteoporosis; RIP3; RIPK3; SNP; eQTL.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
CIRCOS plot [20] displaying (from outside to inside) chromosome numbers, chromosome ideograms, scatterplot complete with gene labels representing the osteoclast eQTL associations presented in Table 1 and Additional file 1: Table S2 (red), scatterplot representing the eBMD GWAS results (green) and gene ontology (GO) biological process groupings relevant to osteoclast biology. Osteoclast eQTL and eBMD GWAS associations are displayed as −log10P values ranging from 0.01 > P > 1.0 × 10−15 (osteoclast eQTL) and 0.001 > P > 1.0 × 10−50 (eBMD GWAS). GO biological process groupings displayed include membrane organisation (blue), regulation of cell migration (red), regulation of catalytic activity (purple), cation transport (orange) and I-kappaB kinase/NF-kappaB signalling (green)
Fig. 2
Fig. 2
Analysis of the eBMD GWAS and osteoclast eQTL datasets using the GARFIELD software [24] demonstrated significant enrichment of osteoporosis risk variants among osteoclast eQTL across four GWAS P value thresholds (P < 1 × 10−5, 1 × 10−6, 1 × 10−7 and 1 × 10−8), with the enrichment results for the trait neuroticism [25] included for comparison. The upper panels present the −log10 enrichment P values for each threshold, while the lower panels present the natural logarithm of the odds ratios for each threshold with 95% confidence intervals
Fig. 3
Fig. 3
Micro-CT assessment of the distal femur from 15-week-old male Ripk3−/− and WT mice. Representative 3D images of the distal femur demonstrate the following: a reduced extension of the trabecular network into the diaphysis, b expansion of the medullary cavity and c increased size of the trabecular bone compartment with no change in trabecular bone density in the Ripk3-/- mice. Quantitative analysis of micro-CT parameters (mean + standard deviation) displays the following: d cortical volume, e bone marrow volume, f endosteal perimeter, g periosteal perimeter, h trabecular bone volume fraction and i trabecular extension in the Ripk3−/− mice relative to WT mice. N = 5 for each group; WT, wildtype. **P < 0.01
Fig. 4
Fig. 4
Quantitative histomorphometric analysis of femora from 15-week-old male WT and Ripk3−/− mice (mean + standard deviation). a Osteoclast number (N.Oc). b Osteoclast surface relative to bone surface (Oc.S/BS). c Number of osteoclasts relative to bone surface (N.Oc/BS(mm−1)). d Osteoblast number (N.Ob). e Number of osteoblasts relative to bone surface (N.Ob/BS(mm−1)). f Representative low-power images (× 40 magnification) of TRAP-stained sections of the femur just below the growth plate. N = 4 and 5 for the WT and Ripk3−/− groups, respectively; WT, wildtype

References

    1. Battle A, Brown CD, Engelhardt BE, Montgomery SB. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204–213. - PMC - PubMed
    1. Grundberg E, Kwan T, Ge B, Lam KC, Koka V, Kindmark A, et al. Population genomics in a disease targeted primary cell model. Genome Res. 2009;19(11):1942–1952. - PMC - PubMed
    1. Mullin BH, Zhu K, Xu J, Brown SJ, Mullin S, Tickner J, et al. Expression quantitative trait locus study of bone mineral density GWAS variants in human osteoclasts. J Bone Miner Res. 2018;33(6):1044-51. - PubMed
    1. Mullin BH, Zhu K, Brown SJ, Mullin S, Tickner J, Pavlos NJ, et al. Genetic regulatory mechanisms in human osteoclasts suggest a role for the STMP1 and DCSTAMP genes in Paget’s disease of bone. Sci Rep. 2019;9(1):1052. - PMC - PubMed
    1. Robbins JA, Biggs ML, Cauley J. Adjusted mortality after hip fracture: from the cardiovascular health study. J Am Geriatr Soc. 2006;54(12):1885–1891. - PubMed

Publication types

Substances