Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May;378(2170):20190168.
doi: 10.1098/rsta.2019.0168. Epub 2020 Mar 30.

The fourth law of thermodynamics: steepest entropy ascent

Affiliations

The fourth law of thermodynamics: steepest entropy ascent

Gian Paolo Beretta. Philos Trans A Math Phys Eng Sci. 2020 May.

Abstract

When thermodynamics is understood as the science (or art) of constructing effective models of natural phenomena by choosing a minimal level of description capable of capturing the essential features of the physical reality of interest, the scientific community has identified a set of general rules that the model must incorporate if it aspires to be consistent with the body of known experimental evidence. Some of these rules are believed to be so general that we think of them as laws of Nature, such as the great conservation principles, whose 'greatness' derives from their generality, as masterfully explained by Feynman in one of his legendary lectures. The second law of thermodynamics is universally contemplated among the great laws of Nature. In this paper, we show that in the past four decades, an enormous body of scientific research devoted to modelling the essential features of non-equilibrium natural phenomena has converged from many different directions and frameworks towards the general recognition (albeit still expressed in different but equivalent forms and language) that another rule is also indispensable and reveals another great law of Nature that we propose to call the 'fourth law of thermodynamics'. We state it as follows: every non-equilibrium state of a system or local subsystem for which entropy is well defined must be equipped with a metric in state space with respect to which the irreversible component of its time evolution is in the direction of steepest entropy ascent compatible with the conservation constraints. To illustrate the power of the fourth law, we derive (nonlinear) extensions of Onsager reciprocity and fluctuation-dissipation relations to the far-non-equilibrium realm within the framework of the rate-controlled constrained-equilibrium approximation (also known as the quasi-equilibrium approximation). This article is part of the theme issue 'Fundamental aspects of nonequilibrium thermodynamics'.

Keywords: Onsager reciprocity; entropy production; gradient flows; laws of thermodynamics; non-equilibrium thermodynamics; steepest entropy ascent.

PubMed Disclaimer

LinkOut - more resources