Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May;32(19):e1908205.
doi: 10.1002/adma.201908205. Epub 2020 Mar 29.

Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency

Affiliations

Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency

Yong Cui et al. Adv Mater. 2020 May.

Abstract

Optimizing the molecular structures of organic photovoltaic (OPV) materials is one of the most effective methods to boost power conversion efficiencies (PCEs). For an excellent molecular system with a certain conjugated skeleton, fine tuning the alky chains is of considerable significance to fully explore its photovoltaic potential. In this work, the optimization of alkyl chains is performed on a chlorinated nonfullerene acceptor (NFA) named BTP-4Cl-BO (a Y6 derivative) and very impressive photovoltaic parameters in OPV cells are obtained. To get more ordered intermolecular packing, the n-undecyl is shortened at the edge of BTP-eC11 to n-nonyl and n-heptyl. As a result, the NFAs of BTP-eC9 and BTP-eC7 are synthesized. The BTP-eC7 shows relatively poor solubility and thus limits its application in device fabrication. Fortunately, the BTP-eC9 possesses good solubility and, at the same time, enhanced electron transport property than BTP-eC11. Significantly, due to the simultaneously enhanced short-circuit current density and fill factor, the BTP-eC9-based single-junction OPV cells record a maximum PCE of 17.8% and get a certified value of 17.3%. These results demonstrate that minimizing the alkyl chains to get suitable solubility and enhanced intermolecular packing has a great potential in further improving its photovoltaic performance.

Keywords: molecular modification; nonfullerene acceptors; organic photovoltaic cells; power conversion efficiency.

PubMed Disclaimer

References

    1. S. Dai, X. Zhan, Adv. Energy Mater. 2018, 8, 1800002.
    1. R. Søndergaard, M. Hösel, D. Angmo, T. T. Larsen-Olsen, F. C. Krebs, Mater. Today 2012, 15, 36.
    1. H. Kang, G. Kim, J. Kim, S. Kwon, H. Kim, K. Lee, Adv. Mater. 2016, 28, 7821.
    1. M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci, S. Bauer, Nat. Commun. 2012, 3, 770.
    1. F. C. Krebs, Sol. Energy Mater. Sol. Cells 2009, 93, 394.

LinkOut - more resources