Two Distinct Structures of Membrane-Associated Homodimers of GTP- and GDP-Bound KRAS4B Revealed by Paramagnetic Relaxation Enhancement
- PMID: 32227412
- PMCID: PMC7395670
- DOI: 10.1002/anie.202001758
Two Distinct Structures of Membrane-Associated Homodimers of GTP- and GDP-Bound KRAS4B Revealed by Paramagnetic Relaxation Enhancement
Abstract
KRAS homo-dimerization has been implicated in the activation of RAF kinases, however, the mechanism and structural basis remain elusive. We developed a system to study KRAS dimerization on nanodiscs using paramagnetic relaxation enhancement (PRE) NMR spectroscopy, and determined distinct structures of membrane-anchored KRAS dimers in the active GTP- and inactive GDP-loaded states. Both dimerize through an α4-α5 interface, but the relative orientation of the protomers and their contacts differ substantially. Dimerization of KRAS-GTP, stabilized by electrostatic interactions between R135 and E168, favors an orientation on the membrane that promotes accessibility of the effector-binding site. Remarkably, "cross"-dimerization between GTP- and GDP-bound KRAS molecules is unfavorable. These models provide a platform to elucidate the structural basis of RAF activation by RAS and to develop inhibitors that can disrupt the KRAS dimerization. The methodology is applicable to many other farnesylated small GTPases.
Keywords: KRAS; NMR spectroscopy; dimerization; membrane proteins.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Figures






References
-
- Prior IA, Lewis PD, Mattos C, Cancer Res 2012, 72, 2457–2467 - PMC - PubMed
- McCormick F, Clin Cancer Res 2015, 21, 1797–1801 - PMC - PubMed
- Eser S, Schnieke A, Schneider G, Saur D, Br J Cancer 2014, 111, 817–822 - PMC - PubMed
- Krens LL, Baas JM, Gelderblom H, Guchelaar HJ, Drug Discov Today 2010, 15, 502–516 - PubMed
- McCormick F, Expert Opin Ther Targets 2015, 19, 451–454. - PubMed
-
- Nan X, Tamguney TM, Collisson EA, Lin LJ, Pitt C, Galeas J, Lewis S, Gray JW, McCormick F, Chu S, Proc Natl Acad Sci U S A 2015, 112, 7996–8001 - PMC - PubMed
- Spencer-Smith R, Koide A, Zhou Y, Eguchi RR, Sha F, Gajwani P, Santana D, Gupta A, Jacobs M, Herrero-Garcia E, Cobbert J, Lavoie H, Smith M, Rajakulendran T, Dowdell E, Okur MN, Dementieva I, Sicheri F, Therrien M, Hancock JF, Ikura M, Koide S, O’Bryan JP, Nat Chem Biol 2017, 13, 62–68 - PMC - PubMed
- Ambrogio C, Kohler J, Zhou ZW, Wang H, Paranal R, Li J, Capelletti M, Caffarra C, Li S, Lv Q, Gondi S, Hunter JC, Lu J, Chiarle R, Santamaria D, Westover KD, Janne PA, Cell 2018, 172, 857–868 e815 - PubMed
- Chen M, Peters A, Huang T, Nan X, Mini Rev Med Chem 2016, 16, 391–403. - PMC - PubMed
-
- Spencer-Smith R, O’Bryan JP, Semin Cancer Biol 2019, 54, 138–148 - PMC - PubMed
- Holderfield M, Cold Spring Harb Perspect Med 2018, 8 - PMC - PubMed
- Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ, Nat Rev Drug Discov 2014, 13, 828–851 - PMC - PubMed
- Stephen AG, Esposito D, Bagni RK, McCormick F, Cancer Cell 2014, 25, 272–281. - PubMed
-
- Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Biochem J 2016, 473, 1719–1732 - PMC - PubMed
- Muratcioglu S, Chavan TS, Freed BC, Jang H, Khavrutskii L, Freed RN, Dyba MA, Stefanisko K, Tarasov SG, Gursoy A, Keskin O, Tarasova NI, Gaponenko V, Nussinov R, Structure 2015, 23, 1325–1335 - PMC - PubMed
- Guldenhaupt J, Rudack T, Bachler P, Mann D, Triola G, Waldmann H, Kotting C, Gerwert K, Biophys J 2012, 103, 1585–1593 - PMC - PubMed
- Sayyed-Ahmad A, Cho KJ, Hancock JF, Gorfe AA, J Phys Chem B 2016, 120, 8547–8556 - PMC - PubMed
- Prakash P, Sayyed-Ahmad A, Cho KJ, Dolino DM, Chen W, Li H, Grant BJ, Hancock JF, Gorfe AA, Sci Rep 2017, 7, 40109. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous