Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Aug 1:156:153-170.
doi: 10.1016/j.ijbiomac.2020.03.207. Epub 2020 Mar 27.

Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing

Affiliations
Review

Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing

Robin Augustine et al. Int J Biol Macromol. .

Abstract

Electrospinning is one of the most promising techniques for generating porous, nonwoven, and submicron fiber-based membranes for various applications such as catalysis, sensing, tissue engineering and wound healing. Wide range of biopolymers including chitosan can be used to generate submicron fibrous membranes. Owing to the extra cellular matrix (ECM) mimicking property, exudate uptake capacity, biocompatibility, antibacterial activity and biodegradability, electrospun membranes based on chitosan loaded with biologically active agents can play important role in wound healing applications. In order to improve the mechanical stability, degradation, antimicrobial property, vascularization potential and wound healing capacity, various active components such as other polymers, therapeutic agents, nanoparticles and biomolecules were introduced. Approaches such as coaxial electrospinning with other polymers have also been tried to improve the properties of chitosan membranes. To improve the mechanical stability under in vivo conditions, various crosslinking strategies ranging from physical, chemical and biological approaches were also tried by researchers. Electrospun chitosan meshes have also been designed in a highly specialized manner with specific functionalities to deal with the challenging wound environment of diabetic and burn wounds. This review provides a detailed overview of electrospun chitosan-based membranes containing various bioactive and therapeutic agents in the perspective of wound healing and skin regeneration.

Keywords: Chitosan; Electrospinning; Skin substitutes; Tissue regeneration; Wound healing.

PubMed Disclaimer

MeSH terms

LinkOut - more resources