Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 31;21(1):16.
doi: 10.1186/s12865-020-00344-1.

Identification of differentially expressed circulating exosomal lncRNAs in IgA nephropathy patients

Affiliations

Identification of differentially expressed circulating exosomal lncRNAs in IgA nephropathy patients

Na Guo et al. BMC Immunol. .

Abstract

Background: Although immunoglobulin A nephropathy (IgAN) is one of the foremost primary glomerular disease, treatment of IgAN is still in infancy. Non-invasive biomarkers are urgently needed for IgAN diagnosis. We investigate the difference in expression profiles of exosomal long non-coding-RNAs (lncRNAs) in plasma from IgAN patients compared with their healthy first-degree relatives, which may reveal novel non-invasive IgAN biomarkers.

Methods: We isolated exosomes from the plasma of both IgAN patients and their healthy first-degree relatives. High-throughput RNA sequencing and real-time quantitative polymerase chain reaction (qRT-PCR) was used to validate lncRNA expression profiles. Pathway enrichment analysis was used to predict their nearest protein-coding genes.

Results: lncRNA-G21551 was significantly down-regulated in IgAN patients. Interestingly, the nearest protein-coding gene of lncRNA-G21551 was found to be encoding the low affinity receptor of the Fc segment of immunoglobulin G (FCGR3B).

Conclusions: Exosomal lncRNA-G21551, with FCGR3B as the nearest protein-coding gene, was down-regulated in IgAN patients, indicating its potential to serve as a non-invasive biomarker for IgAN.

Keywords: Biomarker; Exosome; High-throughput sequencing; IgA nephropathy; Long non-coding RNAs.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Fig. 1
Fig. 1
Characterization of exosomes isolated from plasma. a The distribution of exosome size by DLS analysis. b Flow cytometry analysis of the exosomal surface markers CD63 and CD81. c Transmission Electron Microscope (TEM) images of isolated exosomes. Scale bar, 100 nm
Fig. 2
Fig. 2
Differential expression profile of lncRNA in IgAN patients of RNA-seq (n = 6) and relatives (n = 6) of RNA-seq. (a) Heatmap of 70 lncRNAs that are differentially expressed between the two groups. The row z-score depict the lncRNAs expression values (b) Volcano plot of the differentially expressed lncRNAs between the two groups, the green, red and black dots represent down-regulated, up-regulated, and non-significance lncRNAs respectively. Cutoff: FDR < 0.05, fold change > 2
Fig. 3
Fig. 3
Validation of differentially expressed lncRNAs by qRT-PCR between IgAN patients and their healthy first-degree relatives. a lncRNA-G21551. b lnc-SPATA31E1–10. c lncRNA-G111779. Gene expression was calculated by the 2-ΔΔct method and normalized to external reference λpolyA+ RNA compared with the maximum ΔCt

Similar articles

Cited by

References

    1. Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med. 2013;368:2402–2414. doi: 10.1056/NEJMra1206793. - DOI - PubMed
    1. Moresco RN, Speeckaert MM, Delanghe JR. Diagnosis and monitoring of IgA nephropathy: the role of biomarkers as an alternative to renal biopsy. Autoimmun Rev. 2015;14:847–853. doi: 10.1016/j.autrev.2015.05.009. - DOI - PubMed
    1. Schena FP, Cox SN. Biomarkers and precision medicine in IgA nephropathy. Semin Nephrol. 2018;38:521–530. doi: 10.1016/j.semnephrol.2018.05.022. - DOI - PubMed
    1. Moresco RN, Speeckaert MM, Zmonarski SC, et al. Urinary myeloid IgA fc alpha receptor (CD89) and transglutaminase-2 as new biomarkers for active IgA nephropathy and henoch-Schonlein purpura nephritis. BBA Clin. 2016;5:79–84. doi: 10.1016/j.bbacli.2016.02.002. - DOI - PMC - PubMed
    1. Delanghe SE, Speeckaert MM, Segers H, et al. Soluble transferrin receptor in urine, a new biomarker for IgA nephropathy and Henoch-Schonlein purpura nephritis. Clin Biochem. 2013;46:591–597. doi: 10.1016/j.clinbiochem.2013.01.017. - DOI - PubMed

Publication types

LinkOut - more resources