Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1988 Nov 15;256(1):35-40.
doi: 10.1042/bj2560035.

The small dermatan sulphate proteoglycans synthesized by fibroblasts derived from skin, synovium and gingiva show tissue-related heterogeneity

Affiliations
Comparative Study

The small dermatan sulphate proteoglycans synthesized by fibroblasts derived from skin, synovium and gingiva show tissue-related heterogeneity

H Larjava et al. Biochem J. .

Abstract

Dermatan sulphate proteoglycans (DSPGs) synthesized in the presence of 35SO4 were characterized in culture media of fibroblast lines obtained from skin, synovium, and gingiva. The molecular mass of DSPG varied from 95-130 kDa as estimated by SDS/polyacrylamide-gel electrophoresis. Gingival fibroblasts constantly produced larger DSPGs than skin fibroblasts. This was due to the larger dermatan sulphate (DS) chains, which also showed tissue-related heterogeneity in the distribution of 4- and 6-sulphated disaccharide units. The N-glycosylated cores (44 and 47 kDa) obtained following chondroitinase ABC treatment were of identical size in all tissues. The cores from the different tissues were also of the same size (38 kDa) when addition of the N-linked oligosaccharides was inhibited by tunicamycin or when they were removed by N-glycanase treatment. No evidence for low-molecular-mass sulphated oligosaccharides was found. All tissues contained two mRNA species (1.6 and 1.9 kb) for the DSPG core protein. These data suggest that the pattern of transferase activities involved in the construction of DS chains differs from one tissue to another. This variation may modulate the functions of DSPG in the extracellular matrix.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1975 May 25;250(10):4007-21 - PubMed
    1. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7683-7 - PubMed
    1. Biochemistry. 1979 Nov 27;18(24):5294-9 - PubMed
    1. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201-5 - PubMed
    1. Biochem J. 1981 Jun 1;195(3):573-81 - PubMed

Publication types