Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 30:685:108354.
doi: 10.1016/j.abb.2020.108354. Epub 2020 Mar 30.

Lnc-Ang362 is a pro-fibrotic long non-coding RNA promoting cardiac fibrosis after myocardial infarction by suppressing Smad7

Affiliations

Lnc-Ang362 is a pro-fibrotic long non-coding RNA promoting cardiac fibrosis after myocardial infarction by suppressing Smad7

Guo Chen et al. Arch Biochem Biophys. .

Abstract

Background: Cardiac fibrosis following myocardial infarction (MI) leads to cardiac remodeling and dysfunction. Dysregulation of Smad7 which negatively regulates the profibrotic transforming growth factor-β1 (TGF-β1)/Smad signaling promotes cardiac fibrosis. However, the molecular mechanisms underlying TGF-β1/Smad7 dysregulation remain elusive. Long non-coding RNAs (lncRNAs) are recently emerging as important regulators of cardiac diseases. Here, we report lnc-Ang362 is a novel lncRNA mediating MI-induced fibrosis through TGF-β1/Smad7 signaling pathway.

Methods and results: The MI model was established by artificial coronary artery occlusion in rats. Microarray analysis identified 215 lncRNAs (fold change > 2.0, P < 0.05) differentially expressed between MI hearts and the sham group 4 weeks after MI. Lnc-Ang362 had the highest fold upregulation and the change was validated by reverse transcription polymerase chain reaction. Also, MI caused a marked increase in TGF-β1 and collagen I/III expression, but significantly downregulated Smad7 expression. Adult rat cardiac fibroblasts (RCFs) treated with TGF-β1 showed increased lnc-Ang362 expression and decreased Smad7 expression. Moreover, overexpression and knockdown of lnc-Ang362 by small interfering RNAs reduced and increased Smad7 expression, respectively. Importantly, this result was negatively correlated with the expression of collagen I/III in RCFs. Furthermore, the luciferase reporter assays confirmed that Smad7 was a validated lnc-Ang362 target. Further silencing Smad7 attenuated the effects of lnc-Ang362 knockdown on decreasing collagen I/III expression in RCFs.

Conclusions: These results suggested lnc-Ang362 promoted cardiac fibrosis after MI via directly suppressing Smad7, which may decrease the inhibitory feedback regulation of TGF-β1/Smad signaling pathway. Thus, lnc-Ang362 may be a novel profibrotic lncRNA in the regulation of cardiac fibrosis post MI.

Keywords: Cardiac fibrosis; Long non-coding RNA; Myocardial infarction; Smad7; Transforming growth factor-β1.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest None.

Similar articles

Cited by

Publication types

LinkOut - more resources