Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 10:322:375-389.
doi: 10.1016/j.jconrel.2020.03.030. Epub 2020 Mar 31.

In situ inflammatory-regulated drug-loaded hydrogels for promoting pelvic floor repair

Affiliations

In situ inflammatory-regulated drug-loaded hydrogels for promoting pelvic floor repair

Menglu Qin et al. J Control Release. .

Abstract

Biomedical hydrogel has been widely used as regenerative biomaterials, however, an immune inflammatory response of hydrogel constantly crops up in body due to crosslinking agent, external stimulus or small molecule residues. Here we present a strategy to treat pelvic organ prolapse (POP) by combining both anti-inflammatory and promote tissue regeneration, using drug-loaded hydrogel to reconstruct the pelvic floor and minimize multiple inflammations. Photo-crosslinked gelatin hydrogel (GelMA) loaded with Puerarin (Pue) regulate inflammation by inhibiting the aggregation of neutrophils and eosinophils, simultaneously intervene the matrix regenerating/remodeling via TGF-β/MMPs pathway to repair the fascia of pelvic floor in rabbit models (POP model). The assessment of inflammatory cytokines expression (IL-3, IL-6, TNF-α, TGF-β1) in human uterus fibroblasts (HUVs), and extracellular matrix (ECM) related factors (COL-1, COL-3, MMP2, MMP9) was performed in rabbit. Immune microenvironment was analyzed by immunohistochemistry in rabbit samples. Pue-loaded GelMA (Pue@GelMA) down regulate inflammatory cytokines (IL-3 and IL-6) and matrix metalloproteinase 2/9 (MMP 2/9), and up regulate 1/3 type collagen (COL-1/3) in vitro. In this study, Pue@GelMA was able to regulate immune microenvironment through restricting the aggregation of neutrophils and eosinophils and remodel the distribution of ECM collagen in vivo. In the POP model, Pue@GelMA can effectively inhibits the inflammatory response caused by material implanted and promote fascia regenerate. This Hydrogel drug loading system was considered as an safe and effective method to treat POP without persistent complications, and it can also be applied to other prolapse diseases (e.g., intestinal hernia) or complex diseases treatment.

Keywords: Drug delivery; Hydrogel; Inflammation; Pelvic organ prolapse; Puerarin.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare no conflict of interest from this study.

Similar articles

Cited by

Publication types