Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 4;526(3):641-646.
doi: 10.1016/j.bbrc.2020.03.135. Epub 2020 Apr 2.

Magnetic targeting of oncolytic VSV-based therapies improves infection of tumor cells in the presence of virus-specific neutralizing antibodies in vitro

Affiliations

Magnetic targeting of oncolytic VSV-based therapies improves infection of tumor cells in the presence of virus-specific neutralizing antibodies in vitro

Dominic Guy Roy et al. Biochem Biophys Res Commun. .

Abstract

Oncolytic viruses (OVs) are a class of biotherapeutics that are currently being explored for the treatment of cancer. While showing promise in several pre-clinical and clinical studies, systemic delivery of these anti-cancer agents is hampered by inefficient tumor targeting and a host immune system that is highly evolved to detect and neutralize pathogens. To shield the virus from immune recognition and destruction, the use of cells as delivery vehicles has been explored for the systemic delivery of OVs. Though several types of cell carriers are able to protect OVs during intravenous delivery, many still lack the ability to specifically home to or accumulate within the tumor microenvironment. Overall, OV-based therapeutics could benefit from tumor targeting strategies to maximize tumor-specific delivery and minimize infection of off-target tissues. In the current study, we examine magnetic targeting as a strategy to improve OV infection of tumor cells in vitro. We found that magnetic targeting of magnetically-labeled VSV particles or VSV-infected cell carriers resulted in increased infection and killing of tumor cells. Furthermore, this enhanced infection of target tumor cells was observed even in the presence of virus-specific neutralizing antibodies. Overall, our findings suggest that magnetic targeting strategies can improve the infection of tumor cells and may be a viable strategy to improve the tumor-targeted delivery of oncolytic VSV-based therapeutics.

Keywords: Cancer; Magnetic targeting; Oncolytic virus; SPIONs; VSV.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources