Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May:120:103735.
doi: 10.1016/j.compbiomed.2020.103735. Epub 2020 Apr 1.

Addressing class imbalance in deep learning for small lesion detection on medical images

Affiliations

Addressing class imbalance in deep learning for small lesion detection on medical images

Alessandro Bria et al. Comput Biol Med. 2020 May.

Abstract

Deep learning methods utilizing Convolutional Neural Networks (CNNs) have led to dramatic advances in automated understanding of medical images. However, in many medical image classification tasks, lesions occupy only a few pixels of the image. This results in a significant class imbalance between lesion and background. From recent literature, it is known that class imbalance may negatively affect the performance of CNN classification. However, very few research exists in the context of lesion detection. In this work, we propose a two-stage deep learning framework able to deal with the high class imbalance encountered during training of small lesion detectors. First, we train a deep cascade (DC) of long sequences of decision trees with an algorithm designed to handle unbalanced data that also drastically reduces the number of background samples reaching the final stage. The remaining samples are fed to a CNN, whose training benefits from both rebalance and hard mining done by the DC. We evaluated DC-CNN on two severely unbalanced classification problems: microcalcification detection and microaneurysm detection. In both cases, DC-CNN outperformed the CNNs trained with commonly used methods for addressing class imbalance such as oversampling, undersampling, hard mining, cost sensitive learning, and one-class classification. The DC-CNN was also ∼10x faster than CNN at test time.

Keywords: Class imbalance; Deep learning; Lesion detection; Microaneurysms; Microcalcifications.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources