Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr 6;20(1):278.
doi: 10.1186/s12885-020-06780-x.

Efficacy and safety of concurrent chemoradiotherapy in ECOG 2 patients with locally advanced non-small-cell lung cancer: a subgroup analysis of a randomized phase III trial

Affiliations

Efficacy and safety of concurrent chemoradiotherapy in ECOG 2 patients with locally advanced non-small-cell lung cancer: a subgroup analysis of a randomized phase III trial

Nan Bi et al. BMC Cancer. .

Abstract

Background: There is no consensus on the therapeutic approach to ECOG 2 patients with locally advanced non-small-cell lung cancer (LA-NSCLC), despite the sizable percentage of these patients in clinical practice. This study focused on the efficacy, toxicity and the optimal chemotherapy regimen of CCRT in ECOG 2 patients in a phase III trial.

Methods: Patients capable of all self-care with bed rest for less than 50% of daytime were classified as ECOG 2 subgroup. A subgroup analysis was performed for ECOG 2 patients recruited in the phase III trial receiving concurrent EP (etoposide + cisplatin)/PC (paclitaxel + carboplatin) chemotherapy with intensity-modulated radiation therapy (IMRT) or three-dimensional conformal external beam radiation therapy (3D-CRT).

Results: A total of 71 ECOG 2 patients were enrolled into the study. Forty-six (64.8%) patients were treated with IMRT technique. The median overall survival (OS) and progression free survival (PFS) for ECOG 2 patients were 16.4 months and 9 months, respectively. No difference was observed in treatment compliance and toxicities between ECOG 2 patients and ECOG 0-1 patients. Within the ECOG 2 group (31 in the EP arm and 40 in the PC arm), median OS and 3-year OS were 15.7 months and 37.5% for the EP arm, and 16.8 months and 7.5% for the PC arm, respectively (p = 0.243). The incidence of grade ≥ 3 radiation pneumonitis was higher in the PC arm (17.5% vs. 0.0%, p = 0.014) with 5 radiation pneumonitis related deaths, while the incidence of grade 3 esophagitis was numerically higher in the EP arm (25.8% vs. 10.0%, p = 0.078).

Conclusions: CCRT provided ECOG 2 patients promising outcome with acceptable toxicities. EP might be superior to PC in terms of safety profile in the setting of CCRT for ECOG 2 patients. Prospective randomized studies based on IMRT technique are warranted to validate our findings.

Trial registration: ClinicalTrials.gov registration number: NCT01494558. (Registered 19 December 2011).

Keywords: Chemoradiotherapy; ECOG 2; Efficacy; Locally advanced; Non-small-cell lung cancer; Toxicity.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
a-b, Kaplan-Meier curves by arm and ECOG status for overall survival (a) and progression-free survival (b). c, Cumulative incidence function of cancer death from competing risk survival analysis by arm and ECOG status. P values were from log-rank tests for a and b, and from Fine and Gray’s method for c. PC = paclitaxel/carboplatin; EP = etoposide/cisplatin; ECOG = Eastern Cooperative Oncology Group performance score
Fig. 2
Fig. 2
Forest plot of HRs for overall survival by prognostic factors. PC = paclitaxel/carboplatin; EP = etoposide/cisplatin; HR = hazard ratio; CI = confidence interval

References

    1. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–594. doi: 10.1016/S0025-6196(11)60735-0. - DOI - PMC - PubMed
    1. Yang P, Allen MS, Aubry MC, Wampfler JA, Marks RS, Edell ES, Thibodeau S, Adjei AA, Jett J, Deschamps C. Clinical features of 5,628 primary lung cancer patients: experience at Mayo Clinic from 1997 to 2003. Chest. 2005;128(1):452–462. doi: 10.1378/chest.128.1.452. - DOI - PubMed
    1. Chansky K, Sculier JP, Crowley JJ, Giroux D, Van Meerbeeck J, Goldstraw P. The International Association for the Study of Lung Cancer staging project: prognostic factors and pathologic TNM stage in surgically managed non-small cell lung cancer. J Thoracic Oncology. 2009;4(7):792–801. doi: 10.1097/JTO.0b013e3181a7716e. - DOI - PubMed
    1. Verger E, Salamero M, Conill C. Can Karnofsky performance status be transformed to the Eastern Cooperative Oncology Group scoring scale and vice versa? Eur J Cancer. 1992;28a(8–9):1328–1330. doi: 10.1016/0959-8049(92)90510-9. - DOI - PubMed
    1. Auperin A, Le Pechoux C, Rolland E, Curran WJ, Furuse K, Fournel P, Belderbos J, Clamon G, Ulutin HC, Paulus R, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(13):2181–2190. doi: 10.1200/JCO.2009.26.2543. - DOI - PubMed

MeSH terms

Associated data