Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 1;3(3):235-260.
doi: 10.1039/c7nh00185a. Epub 2018 Jan 22.

Rational design of materials interface at nanoscale towards intelligent oil-water separation

Affiliations

Rational design of materials interface at nanoscale towards intelligent oil-water separation

Mingzheng Ge et al. Nanoscale Horiz. .

Abstract

Oil-water separation is critical for the water treatment of oily wastewater or oil-spill accidents. The oil contamination in water not only induces severe water pollution but also threatens human beings' health and all living species in the ecological system. To address this challenge, different nanoscale fabrication methods have been applied for endowing biomimetic porous materials, which provide a promising solution for oily-water remediation. In this review, we present the state-of-the-art developments in the rational design of materials interface with special wettability for the intelligent separation of immiscible/emulsified oil-water mixtures. A mechanistic understanding of oil-water separation is firstly described, followed by a summary of separation solutions for traditional oil-water mixtures and special oil-water emulsions enabled by self-amplified wettability due to nanostructures. Guided by the basic theory, the rational design of interfaces of various porous materials at nanoscale with special wettability towards superhydrophobicity-superoleophilicity, superhydrophilicity-superoleophobicity, and superhydrophilicity-underwater superoleophobicity is discussed in detail. Although the above nanoscale fabrication strategies are able to address most of the current challenges, intelligent superwetting materials developed to meet special oil-water separation demands and to further promote the separation efficiency are also reviewed for various special application demands. Finally, challenges and future perspectives in the development of more efficient oil-water separation materials and devices by nanoscale control are provided. It is expected that the biomimetic porous materials with nanoscale interface engineering will overcome the current challenges of oil-water emulsion separation, realizing their practical applications in the near future with continuous efforts in this field.

PubMed Disclaimer

LinkOut - more resources