Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 14;6(26):4274-4292.
doi: 10.1039/c8tb01245h. Epub 2018 Jun 22.

Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections

Affiliations

Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections

Xi Li et al. J Mater Chem B. .

Abstract

Since their development over 70 years, antibiotics are still the most effective strategy to treat bacterial biofilms and infections. However, the overuse of antibiotics in human healthcare and industrial applications has resulted in the development of serious antibiotic-resistant bacteria. Therefore, alternative ways to prevent bacteria attachment and biofilm formation are urgently needed. Recently, mediated biofilm formation processes and smart antibacterial surfaces have emerged as promising strategies to prevent and treat bacterial infections. This review discusses the recent progress in biofilm interference and smart antibacterial surfaces. Smart antibacterial and anti-biofilm surfaces should be responsive to the bacterial infection environment, switchable between various antibacterial functions and have a special bio-inspired structure and function. The major topics discussed are: (i) smart anti-biofilm surfaces via the prevention of biofilm formation or promoting mature biofilm dissolution, (ii) smart materials for reversible killing and/or release of bacteria, (iii) smart surfaces responsive to bacterial infection microenvironments or external stimuli and (iv) bio-inspired surfaces with antifouling and bactericidal properties.

PubMed Disclaimer

LinkOut - more resources