Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec 28;6(48):8090-8104.
doi: 10.1039/c8tb01918e. Epub 2018 Nov 21.

Surface engineering of titanium implants with enzyme-triggered antibacterial properties and enhanced osseointegration in vivo

Affiliations

Surface engineering of titanium implants with enzyme-triggered antibacterial properties and enhanced osseointegration in vivo

Zhang Yuan et al. J Mater Chem B. .

Abstract

Preventing bacterial infection and improving the osseointegration of titanium (Ti) and its alloys are both highly crucial factors for their long-term successful implantation in clinical applications. However, the straightforward applications of antibacterial surfaces on Ti-based materials remain limited due to their side effects on cytocompatibility. Herein, catechol-functionalized multilayer films composed of dopamine-modified hyaluronic acid (HA-c) and 3,4-dihydroxyhydrocinnamic acid-modified chitosan (Chi-c) were developed on Ti substrates modified with TiO2 nanotube arrays loaded with an antibacterial drug. The treated Ti substrate showed strong hydrophilicity, with a water contact angle of about 20°, and obviously inhibited early-stage bacterial adhesion. Moreover, this system displayed an enzyme-responsive release of antibacterial drug triggered by the hyaluronidase degradation of HA-c, which exhibited effective antibacterial ability and eliminated side effects caused by burst release of antibiotics. Meanwhile, the modified Ti substrates significantly promoted initial osteoblast adhesion through up-regulating the expression of adhesion-related genes, including integrin αv and β3. More importantly, this prepared coating with bacterial self-responsiveness improved osseointegration and prevented bacterial infection of Ti implants in vivo. Overall, our developed catechol-functionalized and bacterial self-responsive coating on Ti substrate has great significance in clinical applications of orthopedic and dental implants.

PubMed Disclaimer

LinkOut - more resources