Lerisetron Analogues with Antimalarial Properties: Synthesis, Structure-Activity Relationship Studies, and Biological Assessment
- PMID: 32258933
- PMCID: PMC7114883
- DOI: 10.1021/acsomega.0c00327
Lerisetron Analogues with Antimalarial Properties: Synthesis, Structure-Activity Relationship Studies, and Biological Assessment
Abstract
A phenotypic whole cell high-throughput screen against the asexual blood and liver stages of the malaria parasite identified a benzimidazole chemical series. Among the hits were the antiemetic benzimidazole drug Lerisetron 1 (IC50 NF54 = 0.81 μM) and its methyl-substituted analogue 2 (IC50 NF54 = 0.098 μM). A medicinal chemistry hit to lead effort led to the identification of chloro-substituted analogue 3 with high potency against the drug-sensitive NF54 (IC50 NF54 = 0.062 μM) and multidrug-resistant K1 (IC50 K1 = 0.054 μM) strains of the human malaria parasite Plasmodium falciparum. Compounds 2 and 3 gratifyingly showed in vivo efficacy in both Plasmodium berghei and P. falciparum mouse models of malaria. Cardiotoxicity risk as expressed in strong inhibition of the human ether-a-go-go-related gene (hERG) potassium channel was identified as a major liability to address. This led to the synthesis and biological assessment of around 60 analogues from which several compounds with improved antiplasmodial potency, relative to the lead compound 3, were identified.
Copyright © 2020 American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures









Similar articles
-
Antiplasmodial imidazopyridazines: structure-activity relationship studies lead to the identification of analogues with improved solubility and hERG profiles.Medchemcomm. 2018 Sep 6;9(10):1733-1745. doi: 10.1039/c8md00382c. eCollection 2018 Oct 1. Medchemcomm. 2018. PMID: 30429978 Free PMC article.
-
Structure-activity relationship studies of orally active antimalarial 3,5-substituted 2-aminopyridines.J Med Chem. 2012 Dec 27;55(24):11022-30. doi: 10.1021/jm301476b. Epub 2012 Dec 14. J Med Chem. 2012. PMID: 23189922
-
Medicinal chemistry optimization of antiplasmodial imidazopyridazine hits from high throughput screening of a softfocus kinase library: part 2.J Med Chem. 2014 Nov 13;57(21):8839-48. doi: 10.1021/jm500887k. Epub 2014 Oct 23. J Med Chem. 2014. PMID: 25313449
-
A Structural Chemistry Perspective on the Antimalarial Properties of Thiosemicarbazone Metal Complexes.Mini Rev Med Chem. 2019;19(7):569-590. doi: 10.2174/1389557518666181015152657. Mini Rev Med Chem. 2019. PMID: 30324878 Review.
-
Inhibitors of Myocyte Triacylglyceride Accumulation.2013 Dec 15 [updated 2015 Feb 11]. In: Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010–. 2013 Dec 15 [updated 2015 Feb 11]. In: Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010–. PMID: 25834892 Free Books & Documents. Review.
Cited by
-
Design, Synthesis and Evaluation of Praziquantel Analogues and New Molecular Hybrids as Potential Antimalarial and Anti-Schistosomal Agents.Molecules. 2023 Jul 3;28(13):5184. doi: 10.3390/molecules28135184. Molecules. 2023. PMID: 37446846 Free PMC article.
-
Synthesis and Evaluation of Chalcone-Quinoline Based Molecular Hybrids as Potential Anti-Malarial Agents.Molecules. 2021 Jul 5;26(13):4093. doi: 10.3390/molecules26134093. Molecules. 2021. PMID: 34279438 Free PMC article.
-
A Comprehensive Account on Recent Progress in Pharmacological Activities of Benzimidazole Derivatives.Front Pharmacol. 2021 Nov 3;12:762807. doi: 10.3389/fphar.2021.762807. eCollection 2021. Front Pharmacol. 2021. PMID: 34803707 Free PMC article. Review.
-
Antiplasmodial activity, structure-activity relationship and studies on the action of novel benzimidazole derivatives.Sci Rep. 2023 Jan 6;13(1):285. doi: 10.1038/s41598-022-27351-z. Sci Rep. 2023. PMID: 36609676 Free PMC article.
References
-
- Orth H.; Jensen B. O.; Holtfreter M. C.; Kocheril S. J.; Mallach S.; McKenzie C.; Muller-Stover I.; Henrich B.; Imwong M.; White N. J.; Haussinger D.; Richter J. Plasmodium knowlesi Infection Imported to Germany, January 2013. Euro Surveill. 2013, 2060310.2807/1560-7917.es2013.18.40.20603. - DOI - PubMed
- de Koning-Ward T. F.; Dixon M. W. A.; Tilley L.; Gilson P. R. Plasmodium Species: Master Renovators of Their Host Cells. Nat. Rev. Microbiol. 2016, 14, 494–507. 10.1038/nrmicro.2016.79. - DOI - PubMed
-
- Burrows J. N.; Chibale K.; Wells T. N. C. The State of the Art in Anti-malarial Drug Discovery and Development. Curr. Top. Med. Chem. 2011, 11, 1226–1254. 10.2174/156802611795429194. - DOI - PubMed
- Chin W.; Contacos P. G.; Coatney G. R.; Kimball H. R. A Naturally Acquired Quotidian-Type Malaria in Man Transferable to Monkeys. Science 1965, 149, 86510.1126/science.149.3686.865. - DOI - PubMed
- Vythilingam I.; NoorAzian Y. M.; Huat T. C.; Ida Jiram A.; Yusri Y. M.; Azahari A. H.; NorParnia I.; NoorRain A.; LokmanHakim S. Plasmodium knowlesi in Humans, Macaques and Mosquitoes in Peninsular Malaysia. Parasites Vectors 2008, 1, 2610.1186/1756-3305-1-26. - DOI - PMC - PubMed
-
- World Health Organization (WHO). World Malaria Report, 2018. http://www.who.int/malaria/publications/world-malaria-report-2018/en/ (accessed Sept 30, 2019).
LinkOut - more resources
Full Text Sources