Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul 28;2(28):4489-4499.
doi: 10.1039/c3tb21824d. Epub 2014 Jun 12.

Hyaluronan derivatives bearing variable densities of ferulic acid residues

Affiliations

Hyaluronan derivatives bearing variable densities of ferulic acid residues

A Cappelli et al. J Mater Chem B. .

Abstract

A synthetic procedure has been developed to conjugate ferulic acid (FA) to an important natural polysaccharide derivative such as hyaluronic acid (HA). The activation of FA with 1,1'-carbonyldiimidazole (CDI) has been investigated. Two reactive intermediates, namely monoimidazolide 2 [i.e. (E)-3-(4-hydroxy-3-methoxyphenyl)-1-(1H-imidazol-1-yl)prop-2-en-1-one] and bisimidazolide 3 [i.e. (E)-4-(3-(1H-imidazol-1-yl)-3-oxoprop-1-enyl)-2-methoxyphenyl 1H-imidazole-1-carboxylate] were characterized from the point of view of their structure and reactivity. The ready isolation of bisimidazolide 3 and its reactivity support its potential usefulness in the feruloylation of molecular or macromolecular materials bearing hydroxyl moieties. Bisimidazolide derivative 3 has been found to be an effective reagent in the feruloylation of HA to give HAFA graft copolymers showing different grafting degrees (GD), which could be modulated by varying the reaction conditions. A series of HAFA derivatives showing different GD values has been prepared and submitted to an extensive macromolecular and rheological characterization in order to ascertain that the grafting of HA with FA does not degrade the polysaccharide backbone and to evaluate the role of GD in affecting solubility and rheological properties. The results suggested that relatively low GD values were sufficient to confer physical cross-linking capabilities resulting in the features of a strong gel of HAFA dispersions.

PubMed Disclaimer

LinkOut - more resources