Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul 7;3(25):5058-5069.
doi: 10.1039/c5tb00384a. Epub 2015 Apr 24.

Small bioactive molecules as dual functional co-dopants for conducting polymers

Affiliations

Small bioactive molecules as dual functional co-dopants for conducting polymers

J A Goding et al. J Mater Chem B. .

Abstract

Biological responses to neural interfacing electrodes can be modulated via biofunctionalisation of conducting polymer (CP) coatings. This study investigated the use of small bioactive molecules with anti-inflammatory properties. Specifically, anionic dexamethasone phosphate (DP) and valproic acid (VA) were used to dope the CP poly(ethylenedioxythiophene) (PEDOT). The impact of DP and VA on material properties was explored both individually and together as a codoped system, compared to the conventional dopant p-toluenesulfonate (pTS). Electrical properties of DP and VA doped PEDOT were reduced in comparison to PEDOT/pTS, however co-doping with both DP and VA was shown to significantly improve the electroactivity of PEDOT in comparison the individually doped coatings. Similarly, while the individually doped PEDOT coatings were mechanically friable, the inclusion of both dopants during electropolymerisation was shown to attenuate this response. In a whole-blood model of inflammation all DP and VA doped CPs retained their bioactivity, causing a significant reduction in levels of the pro-inflammatory cytokine TNF-α. These studies demonstrated that small charged bioactive molecules are able act as dopants for CPs and that co-doping with ions of varied size and doping affinity may provide a means of addressing the limitations of large bulky bimolecular dopants.

PubMed Disclaimer

LinkOut - more resources