Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep 21;3(35):6989-7005.
doi: 10.1039/c5tb00885a. Epub 2015 Jul 22.

Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications

Affiliations

Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications

Jingyu Shi et al. J Mater Chem B. .

Abstract

In the past few decades, Förster resonance energy transfer (FRET) has been used as a powerful tool for providing nanoscale information in many biosensing and bioanalysis applications. The performance of FRET assays is mainly dependent on the design of donor and acceptor pairs. Recently, a series of nanoparticles start to be used in FRET assays including semiconductor quantum dots (QDs), graphene quantum dots (GQDs), upconversion nanoparticles (UCNPs), gold nanoparticles (AuNPs) and graphene oxide (GO). The rapid pace of development in nanoparticles provides a lot of opportunities to revolutionize FRET techniques. Many nanoparticle based FRET assays have also been developed for various biosensing applications with higher sensitivity and better stability compared with traditional organic fluorophore based FRET assays. This article reviews the recent progress of nanoparticle FRET assays and their applications in biosensing area.

PubMed Disclaimer