Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Aug 28;4(32):5358-5366.
doi: 10.1039/c6tb01335j. Epub 2016 Jul 21.

Selective sensing of isoprene by Ti-doped ZnO for breath diagnostics

Affiliations

Selective sensing of isoprene by Ti-doped ZnO for breath diagnostics

A T Güntner et al. J Mater Chem B. .

Abstract

Exhaled isoprene could enable non-invasive monitoring of cholesterol-lowering therapies. Here, we report an isoprene-selective sensor at high relative humidity (RH) for the first time (to our knowledge). It is made of nanostructured, chemo-resistive Ti-doped ZnO particles (10-20 nm crystal size) produced by flame spray pyrolysis (FSP) and directly deposited in one step onto compact sensor substrates forming highly porous films. The constituent particles consist of stable Ti-doped ZnO solid solutions for Ti levels up to 10 mol% apparently by substitutional incorporation of Ti4+ into the ZnO wurtzite lattice and dominant presence at the particle surface. These Ti4+ point defects strongly enhance the isoprene sensitivity (>15 times higher than pure ZnO) and turn ZnO isoprene-selective, while also improving its thermal stability. In situ infrared spectroscopy confirms that Ti4+ intensifies the surface interaction of Ti-doped ZnO with isoprene by providing additional sites for chemisorbed hydroxyl species. In fact, at an optimal Ti content of 2.5 mol%, this sensor shows superior isoprene responses compared to acetone, NH3 and ethanol at 90% RH. Most notably, breath-relevant isoprene concentrations can be detected accurately down to 5 ppb with high (>10) signal-to-noise ratio. As a result, an inexpensive isoprene detector has been developed that could be easily incorporated into a portable breath analyzer for non-invasive monitoring of metabolic disorders (e.g. cholesterol).

PubMed Disclaimer

LinkOut - more resources