Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Aug 21;4(31):5256-5264.
doi: 10.1039/c6tb01144f. Epub 2016 Jul 22.

Development of polypeptide-based zwitterionic amphiphilic micelles for nanodrug delivery

Affiliations

Development of polypeptide-based zwitterionic amphiphilic micelles for nanodrug delivery

Guanglong Ma et al. J Mater Chem B. .

Abstract

Protein molecules, which typically have a hydrophobic core and a zwitterionic shell with a polypeptide backbone, could be ideal materials for nanodrug vehicles (NDVs) with low side effects. Here, we synthesized poly(l-aspartic acid(lysine))-b-poly(l-lysine(Z)) (PAsp(Lys)-b-PLys(Z)) (PALLZ), a novel amphiphilic block polypeptide with key structures of protein to investigate the possibility for use as a NDV. This polypeptide can spontaneously self-assemble into micelles in aqueous solution with a zwitterionic brush (the PAsp(Lys) part) to provide the nonfouling shell and a hydrophobic core (the PLys(Z) part) for loading hydrophobic drugs. The doxorubicin (DOX) loaded PALLZ micelles showed excellent resistance to nonspecific protein adsorption in FBS, which leads to very low internalization. Moreover, PALLZ micelles showed no cytotoxicity to MCF7, HeLa and HepG-2 cells up to 500 μg mL-1. All these results indicated that zwitterionic amphiphilic block polypeptides could be promising materials for NDVs.

PubMed Disclaimer

LinkOut - more resources