Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2020 Apr 8;4(4):CD013141.
doi: 10.1002/14651858.CD013141.pub2.

Early versus late parenteral nutrition for critically ill term and late preterm infants

Affiliations
Meta-Analysis

Early versus late parenteral nutrition for critically ill term and late preterm infants

Kwi Moon et al. Cochrane Database Syst Rev. .

Abstract

Background: Recently conducted randomised controlled trials (RCTs) suggest that late commencement of parenteral nutrition (PN) may have clinical benefits in critically ill adults and children. However, there is currently limited evidence regarding the optimal timing of commencement of PN in critically ill term and late preterm infants.

Objectives: To evaluate the benefits and safety of early versus late PN in critically ill term and late preterm infants.

Search methods: We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (5 April 2019), MEDLINE Ovid (1966 to 5 April 2019), Embase Ovid (1980 to 5 April 2019), EMCare (1995 to 5 April 2019) and MEDLINE via PubMed (1966 to 5 April 2019). We searched for ongoing or recently completed clinical trials, and also searched the grey literature and reference lists of relevant publications.

Selection criteria: We included RCTs comparing early versus late initiation of PN in term and late preterm infants. We defined early PN as commencing within 72 hours of admission, and late PN as commencing after 72 hours of admission. Infants born at 37 weeks' gestation or more were defined as term, and infants born between 34 and 36+6 weeks' gestation were defined as late preterm.

Data collection and analysis: Two review authors independently selected the trials, extracted the data and assessed the risk of bias. Treatment effects were expressed using risk ratio (RR) and risk difference (RD) for dichotomous outcomes and mean difference (MD) for continuous data. The quality of the evidence was assessed using the GRADE approach.

Main results: Two RCTs were eligible for inclusion. Data were only available from a subgroup (including 209 term infants) from one RCT in children (aged from birth to 17 years) conducted in Belgium, the Netherlands and Canada. In that RCT, children with medium to high risk of malnutrition were included if a stay of 24 hours or more in the paediatric intensive care unit (PICU) was expected. Early PN and late PN were defined as initiation of PN within 24 hours and after day 7 of admission to PICU, respectively. The risk of bias for the study was considered to be low for five domains and high for two domains. The subgroup of term infants that received late PN had significantly lower risk of in-hospital all-cause mortality (RR 0.35, 95% confidence interval (CI) 0.14 to 0.87; RD -0.10, 95% CI -0.18 to -0.02; number needed to treat for an additional beneficial outcome (NNTB) = 10; 1 trial, 209 participants) and neonatal mortality (death from any cause in the first 28 days since birth) (RR 0.29, 95% CI 0.10 to 0.88; RD -0.09, 95% CI -0.16 to -0.01; NNTB = 11; 1 trial, 209 participants). There were no significant differences in rates of healthcare-associated blood stream infections, growth parameters and duration of hospital stay between the two groups. Neurodevelopmental outcomes were not reported. The quality of evidence was considered to be low for all outcomes, due to imprecision (owing to the small sample size and wide confidence intervals) and high risk of bias in the included studies.

Authors' conclusions: Whilst late commencement of PN in term and late preterm infants may have some benefits, the quality of the evidence was low and hence our confidence in the results is limited. Adequately powered RCTs, which evaluate short-term as well as long-term neurodevelopmental outcomes, are needed.

PubMed Disclaimer

Conflict of interest statement

KM has no interests to declare. SR has no interests to declare. UR has no interests to declare. GJ has no interests to declare.

Figures

1
1
Study flow diagram.
2
2
Risk of bias summary: review authors' judgements about each risk of bias item for each included study.
3
3
Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.
4
4
Forest plot of comparison: 1 Early PN versus Late PN, outcome: 1.1 In‐hospital all‐cause mortality.
5
5
Forest plot of comparison: 1 Early PN versus Late PN, outcome: 1.2 Neonatal mortality (within 28 days of birth).
6
6
Forest plot of comparison: 1 Early PN versus Late PN, outcome: 1.5 Healthcare‐associated blood stream infection.
1.1
1.1. Analysis
Comparison 1 Early PN versus Late PN, Outcome 1 In‐hospital all‐cause mortality.
1.2
1.2. Analysis
Comparison 1 Early PN versus Late PN, Outcome 2 Neonatal mortality (within 28 days of birth).
1.3
1.3. Analysis
Comparison 1 Early PN versus Late PN, Outcome 3 Death during first week of admission.
1.4
1.4. Analysis
Comparison 1 Early PN versus Late PN, Outcome 4 90‐day mortality.
1.5
1.5. Analysis
Comparison 1 Early PN versus Late PN, Outcome 5 Healthcare‐associated blood stream infection.
1.6
1.6. Analysis
Comparison 1 Early PN versus Late PN, Outcome 6 Healthcare‐associated infection (any type).
1.7
1.7. Analysis
Comparison 1 Early PN versus Late PN, Outcome 7 Other types of hospital‐acquired infection: Airway.
1.8
1.8. Analysis
Comparison 1 Early PN versus Late PN, Outcome 8 Other types of hospital‐acquired infection: Urinary tract.
1.9
1.9. Analysis
Comparison 1 Early PN versus Late PN, Outcome 9 Other types of hospital‐acquired infection: Central nervous system.
1.10
1.10. Analysis
Comparison 1 Early PN versus Late PN, Outcome 10 Other types of hospital‐acquired infection: Soft tissue.
1.11
1.11. Analysis
Comparison 1 Early PN versus Late PN, Outcome 11 Other types of hospital‐acquired infection: Others.
1.12
1.12. Analysis
Comparison 1 Early PN versus Late PN, Outcome 12 Other types of hospital‐acquired infection: No focus identified.
1.13
1.13. Analysis
Comparison 1 Early PN versus Late PN, Outcome 13 Duration of hospital stay.
1.14
1.14. Analysis
Comparison 1 Early PN versus Late PN, Outcome 14 Duration of ICU stay.
1.15
1.15. Analysis
Comparison 1 Early PN versus Late PN, Outcome 15 Duration of respiratory support (mechanical ventilation or CPAP or NIPPV).
1.16
1.16. Analysis
Comparison 1 Early PN versus Late PN, Outcome 16 Duration of mechanical ventilation.
1.17
1.17. Analysis
Comparison 1 Early PN versus Late PN, Outcome 17 Hypoglycaemia.
1.18
1.18. Analysis
Comparison 1 Early PN versus Late PN, Outcome 18 Highest blood urea nitrogen levels during hospital stay.
1.19
1.19. Analysis
Comparison 1 Early PN versus Late PN, Outcome 19 Z scores for weight at discharge.
1.20
1.20. Analysis
Comparison 1 Early PN versus Late PN, Outcome 20 Change to Z scores for weight from baseline.

Update of

  • doi: 10.1002/14651858.CD013141

Similar articles

Cited by

References

References to studies included in this review

Makay 2007 {published data only}
    1. Makay B, Duman N, Ozer E, Kumral A, Yesilirmak D, Ozkan H. Randomized, controlled trial of early intravenous nutrition for prevention of neonatal jaundice in term and near‐term neonates. Journal of Pediatric Gastroenterology and Nutrition 2007;44(3):354‐8. [DOI: 10.1097/MPG.0b013e31802b31f2; PUBMED: 17325557] - DOI - PubMed
van Puffelen 2018 {published data only}
    1. Puffelen E, Vanhorebeek I, Joosten KFM, Wouters PJ, Berghe G, Verbruggen SCAT. Early versus late parenteral nutrition in critically ill, term neonates: a preplanned secondary subgroup analysis of the PEPaNIC multicentre, randomised controlled trial. The Lancet Child & Adolescent Health 2018;2(7):505‐15. [DOI: 10.1016/S2352-4642(18)30131-7; PUBMED: 30169323] - DOI - PubMed

References to studies excluded from this review

Brownlee 1993 {published data only}
    1. Brownlee KG, Kelly EJ, Ng PC, Kendall‐Smith SC, Dear PR. Early or late parenteral nutrition for the sick preterm infant?. Archives of Disease in Childhood 1993;69(3 Spec No):281‐3. [DOI: 10.1136/adc.69.3_spec_no.281; PUBMED: 8215565] - DOI - PMC - PubMed
Vanhorebeek 2017 {published data only}
    1. Vanhorebeek I, Verbruggen S, Casaer MP, Gunst J, Wouters PJ, Hanot J, et al. Effect of early supplemental parenteral nutrition in the paediatric ICU: a preplanned observational study of post‐randomisation treatments in the PEPaNIC trial. The Lancet Respiratory Medicine 2017;5(6):475‐83. [DOI: 10.1016/S2213-2600(17)30186-8; PUBMED: 28522351] - DOI - PubMed
van Puffelen 2018a {published data only}
    1. Puffelen E, Polinder S, Vanhorebeek I, Wouters PJ, Bossche N, Peers G, et al. Cost‐effectiveness study of early versus late parenteral nutrition in critically ill children (PEPaNIC): preplanned secondary analysis of a multicentre randomised controlled trial. Critical Care 2018;22(1):4. [DOI: 10.1186/s13054-017-1936-2; PUBMED: 29335014] - DOI - PMC - PubMed
van Puffelen 2018b {published data only}
    1. Puffelen E, Hulst JM, Vanhorebeek I, Dulfer K, Berghe G, Verbruggen SCAT, et al. Outcomes of delaying parenteral nutrition for 1 week vs initiation within 24 hours among undernourished children in pediatric intensive care: a subanalysis of the PEPaNIC randomized clinical trial. JAMA Network Open 2018;1(5):e182668. [DOI: 10.1001/jamanetworkopen.2018.2668; PUBMED: 30646158] - DOI - PMC - PubMed
Verstraete 2018 {published data only}
    1. Verstraete S, Vanhorebeek I, Puffelen E, Derese I, Ingels C, Verbruggen SC, et al. Leukocyte telomere length in paediatric critical illness: effect of early parenteral nutrition. Critical Care 2018;22(1):38. [DOI: 10.1186/s13054-018-1972-6; PUBMED: 29463275] - DOI - PMC - PubMed
Verstraete 2019 {published data only}
    1. Verstraete S, Verbruggen SC, Hordijk JA, Vanhorebeek I, Dulfer K, Guiza F, et al. Long‐term developmental effects of withholding parenteral nutrition for 1 week in the paediatric intensive care unit: a 2‐year follow‐up of the PEPaNIC international, randomised, controlled trial. The Lancet Respiratory Medicine 2019;7(2):141‐53. [DOI: 10.1016/S2213-2600(18)30334-5; PUBMED: 30224325] - DOI - PubMed

Additional references

Adamkin 2007
    1. Adamkin DH. Early aggressive nutrition: parenteral amino acids and minimal enteral nutrition for extremely low birth weight (< 1000 g) infants. Minerva Pediatrica 2007;59(4):369‐77. [PUBMED: 17947842] - PubMed
Agus 2017
    1. Agus MS, Wypij D, Hirshberg EL, Srinivasan V, Faustino EV, Luckett PM, et al. Tight glycemic control in critically ill children. New England Journal of Medicine 2017;376(8):729‐41. [DOI: 10.1056/NEJMoa1612348; PUBMED: 28118549] - DOI - PMC - PubMed
Ainsworth 2015
    1. Ainsworth S, McGuire W. Percutaneous central venous catheters versus peripheral cannulae for delivery of parenteral nutrition in neonates. Cochrane Database of Systematic Reviews 2015, Issue 10. [DOI: 10.1002/14651858.CD004219.pub4] - DOI - PMC - PubMed
Aksnes 1996
    1. Aksnes J, Schmidt H, Hall C, Nordstrand K. Long term lipid‐based parenteral nutrition causes pulmonary hypertension in pigs. European Journal of Surgery 1996;162(8):649‐56. [PUBMED: 8891624] - PubMed
Alshweki 2015
    1. Alshweki A, Munuzuri AP, Bana AM, Castro MJ, Andrade F, Aldamiz‐Echevarria L, et al. Effects of different arachidonic acid supplementation on psychomotor development in very preterm infants: a randomized controlled trial. Nutrition Journal 2015;14:101. [DOI: 10.1186/s12937-015-0091-3; PUBMED: 26424477] - DOI - PMC - PubMed
Amin 2009
    1. Amin SB, Harte T, Scholer L, Wang H. Intravenous lipid and bilirubin‐albumin binding variables in premature infants. Pediatrics 2009;124(1):211‐7. [DOI: 10.1542/peds.2008-0846; PUBMED: 19564302] - DOI - PMC - PubMed
Avila‐Figueroa 1998
    1. Avila‐Figueroa C, Goldmann DA, Richardson DK, Gray JE, Ferrari A, Freeman J. Intravenous lipid emulsions are the major determinant of coagulase‐negative staphylococcal bacteremia in very low birth weight newborns. Pediatric Infectious Disease Journal 1998;17(1):10‐7. [PUBMED: 9469388] - PubMed
Basu 1999
    1. Basu R, Muller DP, Papp E, Merryweather I, Eaton S, Klein N, et al. Free radical formation in infants: the effect of critical illness, parenteral nutrition, and enteral feeding. Journal of Pediatric Surgery 1999;34(7):1091‐5. [PUBMED: 10442597] - PubMed
Bishay 2012
    1. Bishay M, Retrosi G, Horn V, Cloutman‐Green E, Harris K, Coppi P, et al. Septicaemia due to enteric organisms is a later event in surgical infants requiring parenteral nutrition. European Journal of Pediatric Surgery 2012;22(1):50‐3. [DOI: 10.1055/s-0031-1287853; PUBMED: 22270963] - DOI - PubMed
Bulbul 2012
    1. Bulbul A, Okan F, Bulbul L, Nuhoglu A. Effect of low versus high early parenteral nutrition on plasma amino acid profiles in very low birth‐weight infants. Journal of Maternal‐Fetal & Neonatal Medicine 2012;25(6):770‐6. [DOI: 10.3109/14767058.2011.589873; PUBMED: 21770835] - DOI - PubMed
Can 2012
    1. Can E, Bulbul A, Uslu S, Comert S, Bolat F, Nuhoglu A. Effects of aggressive parenteral nutrition on growth and clinical outcome in preterm infants. Pediatrics International 2012;54(6):869‐74. [DOI: 10.1111/j.1442-200X.2012.03713.x; PUBMED: 22882288] - DOI - PubMed
Can 2013
    1. Can E, Bulbul A, Uslu S, Bolat F, Comert S, Nuhoglu A. Early aggressive parenteral nutrition induced high Insulin‐like growth factor 1 (IGF‐1) and insulin‐like growth factor binding protein 3 (IGFBP3) levels can prevent risk of retinopathy of prematurity. Iranian Journal of Pediatrics 2013;23(4):403‐10. [PUBMED: 24427493] - PMC - PubMed
Casaer 2011
    1. Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, et al. Early versus late parenteral nutrition in critically ill adults. New England Journal of Medicine 2011;365(6):506‐17. [DOI: 10.1056/NEJMoa1102662; PUBMED: 21714640] - DOI - PubMed
Chen 2018
    1. Chen L, Li T, Fang F, Zhang Y, Faramand A. Tight glycemic control in critically ill pediatric patients: a systematic review and meta‐analysis. Critical Care 2018;22(1):57. [PUBMED: 29501063] - PMC - PubMed
Chettri 2016
    1. Chettri S, Bhat BV, Adhisivam B. Current concepts in the management of meconium aspiration syndrome. Indian Journal of Pediatrics 2016;83(10):1125‐30. [DOI: 10.1007/s12098-016-2128-9; PUBMED: 27206687] - DOI - PubMed
Cies 2014
    1. Cies JJ, Moore WS 2nd. Neonatal and pediatric peripheral parenteral nutrition: what is a safe osmolarity?. Nutrition in Clinical Practice 2014;29(1):118‐24. [PUBMED: 24336401] - PubMed
Clark 2007
    1. Clark RH, Chace DH, Spitzer AR. Effects of two different doses of amino acid supplementation on growth and blood amino acid levels in premature neonates admitted to the neonatal intensive care unit: a randomized, controlled trial. Pediatrics 2007;120(6):1286‐96. [PUBMED: 18055678] - PubMed
Cleminson 2016
    1. Cleminson JS, Zalewski SP, Embleton ND. Nutrition in the preterm infant: what's new?. Current Opinion in Clinical Nutrition and Metabolic Care 2016;19(3):220‐5. [PUBMED: 27504517] - PubMed
De Curtis 2012
    1. Curtis M, Rigo J. The nutrition of preterm infants. Early Human Development 2012;88(Suppl 1):S5‐7. [DOI: 10.1016/j.earlhumdev.2011.12.020; PUBMED: 22261289] - DOI - PubMed
de Jong 2015
    1. Jong C, Kikkert HK, Seggers J, Boehm G, Decsi T, Hadders‐Algra M. Neonatal fatty acid status and neurodevelopmental outcome at 9 years. Early Human Development 2015;91(10):587‐91. [DOI: 10.1016/j.earlhumdev.2015.07.007; PUBMED: 26231619] - DOI - PubMed
Denne 1996
    1. Denne SC, Karn CA, Ahlrichs JA, Dorotheo AR, Wang J, Liechty EA. Proteolysis and phenylalanine hydroxylation in response to parenteral nutrition in extremely premature and normal newborns. Journal of Clinical Investigation 1996;97(3):746‐54. [DOI: 10.1172/JCI118473; PUBMED: 8609231] - DOI - PMC - PubMed
Dong 2017
    1. Dong Y, Jiang SY, Zhou Q, Cao Y. Group B Streptococcus causes severe sepsis in term neonates: 8 years experience of a major Chinese neonatal unit. World Journal of Pediatrics 2017;13(4):314‐20. [DOI: 10.1007/s12519-017-0034-5; PUBMED: 28560649] - DOI - PubMed
Donnell 2002
    1. Donnell SC, Taylor N, Saene HK, Magnall VL, Pierro A, Lloyd DA. Infection rates in surgical neonates and infants receiving parenteral nutrition: a five‐year prospective study. Journal of Hospital Infection 2002;52(4):273‐80. [PUBMED: 12473472] - PubMed
Douglas‐Escobar 2015
    1. Douglas‐Escobar M, Weiss MD. Hypoxic‐ischemic encephalopathy: a review for the clinician. JAMA Pediatrics 2015;169(4):397‐403. [DOI: 10.1001/jamapediatrics.2014.3269; PUBMED: 25685948] - DOI - PubMed
Dounousi 2015
    1. Dounousi E, Zikou X, Koulouras V, Katopodis K. Metabolic acidosis during parenteral nutrition: pathophysiological mechanisms. Indian Journal of Critical Care Medicine 2015;19(5):270‐4. [DOI: 10.4103/0972-5229.156473; PUBMED: 25983433] - DOI - PMC - PubMed
Dubbink‐Verheij 2017
    1. Dubbink‐Verheij GH, Bekker V, Pelsma ICM, Zwet EW, Smits‐Wintjens VEHJ, Steggerda SJ, et al. Bloodstream infection incidence of different central venous catheters in neonates: a descriptive cohort study. Frontiers in Pediatrics 2017;5:142. [DOI: 10.3389/fped.2017.00142; PUBMED: 28676849] - DOI - PMC - PubMed
Egger 1997
    1. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta‐analysis detected by a simple, graphical test. BMJ (Clinical Research Ed.) 1997;315(7109):629‐34. [DOI: 10.1136/bmj.315.7109.629; PUBMED: 9310563] - DOI - PMC - PubMed
Fivez 2016
    1. Fivez T, Kerklaan D, Mesotten D, Verbruggen S, Wouters PJ, Vanhorebeek I, et al. Early versus late parenteral nutrition in critically ill children. New England Journal of Medicine 2016;374(12):1111‐22. [DOI: 10.1056/NEJMoa1514762; PUBMED: 26975590] - DOI - PubMed
Freeman 1990
    1. Freeman J, Goldmann DA, Smith NE, Sidebottom DG, Epstein MF, Platt R. Association of intravenous lipid emulsion and coagulase‐negative staphylococcal bacteremia in neonatal intensive care units. New England Journal of Medicine 1990;323(5):301‐8. [DOI: 10.1056/NEJM199008023230504; PUBMED: 2082952] - DOI - PubMed
Friedman 1976
    1. Friedman Z, Danon A, Stahlman MT, Oates JA. Rapid onset of essential fatty acid deficiency in the newborn. Pediatrics 1976;58(5):640‐9. [PUBMED: 824608] - PubMed
Friedman 1986
    1. Friedman Z. Essential fatty acid consideration at birth in the premature neonate and the specific requirement for preformed prostaglandin precursors in the infant. Progress in Lipid Research 1986;25(1‐4):355‐64. [PUBMED: 3321088] - PubMed
Gilio 2000
    1. Gilio AE, Stape A, Pereira CR, Cardoso MF, Silva CV, Troster EJ. Risk factors for nosocomial infections in a critically ill pediatric population: a 25‐month prospective cohort study. Infection Control and Hospital Epidemiology 2000;21(5):340‐2. [DOI: 10.1086/501770; PUBMED: 10823571] - DOI - PubMed
Gonzalez‐Hernandez 2016
    1. Gonzalez‐Hernandez J, Daoud Y, Styers J, Journeycake JM, Channabasappa N, Piper HG. Central venous thrombosis in children with intestinal failure on long‐term parenteral nutrition. Journal of Pediatric Surgery 2016;51(5):790‐3. [DOI: 10.1016/j.jpedsurg.2016.02.024; PUBMED: 26936289] - DOI - PubMed
GRADEpro GDT [Computer program]
    1. McMaster University (developed by Evidence Prime). GRADEpro GDT. Version accessed 14 September 2016. Hamilton (ON): McMaster University (developed by Evidence Prime), 2014.
Gray 1992
    1. Gray JE, Richardson DK, McCormick MC, Workman‐Daniels K, Goldmann DA. Neonatal therapeutic intervention scoring system: a therapy‐based severity‐of‐illness index. Pediatrics 1992;90(4):561‐7. [PUBMED: 1408510] - PubMed
Guellec 2015
    1. Guellec I, Gascoin G, Beuchee A, Boubred F, Tourneux P, Ramful D, et al. Biological impact of recent guidelines on parenteral nutrition in preterm infants. Journal of Pediatric Gastroenterology and Nutrition 2015;61(6):605‐9. [DOI: 10.1097/MPG.0000000000000898; PUBMED: 26147627] - DOI - PubMed
Gutcher 1991
    1. Gutcher GR, Farrell PM. Intravenous infusion of lipid for the prevention of essential fatty acid deficiency in premature infants. American Journal of Clinical Nutrition 1991;54(6):1024‐8. [DOI: 10.1093/ajcn/54.6.1024; PUBMED: 1957817] - DOI - PubMed
Hammerman 1989
    1. Hammerman C, Aramburo MJ, Hill V. Intravenous lipids in newborn lungs: thromboxane‐mediated effects. Critical Care Medicine 1989;17(5):430‐6. [DOI: 10.1097/00003246-198905000-00011; PUBMED: 2707013] - DOI - PubMed
Hasanoglu 2005
    1. Hasanoglu A, Dalgic N, Tumer L, Atalay Y, Cinasal G, Biberoglu G, et al. Free oxygen radical‐induced lipid peroxidation and antioxidant in infants receiving total parenteral nutrition. Prostaglandins, Leukotrienes, and Essential Fatty Acids 2005;73(2):99‐102. [DOI: 10.1016/j.plefa.2005.04.015; PUBMED: 15961302] - DOI - PubMed
Hay 2013
    1. Hay WW Jr. Aggressive nutrition of the preterm infant. Current Pediatrics Reports 2013;1(4). [DOI: 10.1007/s40124-013-0026-4; PUBMED: 24386613] - DOI - PMC - PubMed
Higgins 2011
    1. Higgins JP, Green S editor(s). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011. Available from handbook.cochrane.org.
Hwang 1990
    1. Hwang TL, Huang SL, Chen MF. Effects of intravenous fat emulsion on respiratory failure. Chest 1990;97(4):934‐8. [DOI: 10.1378/chest.97.4.934; PUBMED: 2108849] - DOI - PubMed
International Neonatal Network 1993
    1. International Neonatal Network. The CRIB (clinical risk index for babies) score: a tool for assessing initial neonatal risk and comparing performance of neonatal intensive care units. Lancet 1993;342(8865):193‐8. [PUBMED: 8100927] - PubMed
Jain 2015
    1. Jain A, McNamara PJ. Persistent pulmonary hypertension of the newborn: advances in diagnosis and treatment. Seminars in Fetal & Neonatal Medicine 2015;20(4):262‐71. [DOI: 10.1016/j.siny.2015.03.001; PUBMED: 25843770] - DOI - PubMed
Jiang 2019
    1. Jiang W, Chen G, Zhang J, Lv X, Lu C, Chen H, et al. The effects of two mixed intravenous lipid emulsions on clinical outcomes in infants after gastrointestinal surgery: a prospective, randomized study. Pediatric Surgery International 2019;35(3):347‐55. [DOI: 10.1007/s00383-018-4422-2; PUBMED: 30474700] - DOI - PubMed
Kerklaan 2016
    1. Kerklaan D, Fivez T, Mehta NM, Mesotten D, Rosmalen J, Hulst JM, et al. Worldwide survey of nutritional practices in PICUs. Pediatric Critical Care Medicine 2016;17(1):10‐8. [DOI: 10.1097/PCC.0000000000000542; PUBMED: 26509815] - DOI - PubMed
Kostogloudis 2015
    1. Kostogloudis N, Demiri E, Tsimponis A, Dionyssiou D, Ioannidis S, Chatziioannidis I, et al. Severe extravasation injuries in neonates: a report of 34 cases. Pediatric Dermatology 2015;32(6):830‐5. [DOI: 10.1111/pde.12664; PUBMED: 26337780] - DOI - PubMed
Kugelman 2013
    1. Kugelman A, Colin AA. Late preterm infants: near term but still in a critical developmental time period. Pediatrics 2013;132(4):741‐51. [DOI: 10.1542/peds.2013-1131; PUBMED: 24062372] - DOI - PubMed
Lee 1993
    1. Lee EJ, Simmer K, Gibson RA. Essential fatty acid deficiency in parenterally fed preterm infants. Journal of Paediatrics and Child Health 1993;29(1):51‐5. [PUBMED: 8461181] - PubMed
Leeuwen 2014
    1. Leeuwen L, Fitzgerald DA. Congenital diaphragmatic hernia. Journal of Paediatrics and Child Health 2014;50(9):667‐73. [DOI: 10.1111/jpc.12508; PUBMED: 24528549] - DOI - PubMed
Legeay 2015
    1. Legeay C, Bourigault C, Lepelletier D, Zahar JR. Prevention of healthcare‐associated infections in neonates: room for improvement. Journal of Hospital Infection 2015;89(4):319‐23. [DOI: 10.1016/j.jhin.2015.02.003; PUBMED: 25748794] - DOI - PMC - PubMed
Liu 2015
    1. Liu MY, Chen YY, Hu SH, Chen YK, Chang SJ. The influence of aggressive parenteral nutrition to preterm and very low birth weight infants. Global Pediatric Health 2015;2:1‐6. [DOI: 10.1177/2333794X14567192; PUBMED: 27335933] - DOI - PMC - PubMed
Macdonald 2005
    1. Macdonald MG, Seshia MM, Mullett MD. Avery's Neonatology. 6th Edition. Baltimore (MD): Lippincott Williams and Wilkins, 2005.
Macrae 2014
    1. Macrae D, Grieve R, Allen E, Sadique Z, Morris K, Pappachan J, et al. CHiP Investigators. A randomized trial of hyperglycemic control in pediatric intensive care. New England Journal of Medicine 2014;370(2):107‐18. [DOI: 10.1056/NEJMoa1302564; PUBMED: 24401049] - DOI - PubMed
Mahajan 2017
    1. Mahajan G, Mukhopadhyay K, Attri S, Kumar P. Neurodevelopmental outcome of asymptomatic hypoglycemia compared with symptomatic hypoglycemia and euglycemia in high‐risk neonates. Pediatric Neurology 2017;74:74‐9. [DOI: 10.1016/j.pediatrneurol.2017.05.028; PUBMED: 28739364] - DOI - PubMed
Mehta 2018
    1. Mehta NM, Tasker RC. Nutrition for term neonates in the paediatric intensive care unit. The Lancet Child & Adolescent Health 2018;2(7):469‐71. [DOI: 10.1016/S2352-4642(18)30147-0; PUBMED: 30169311] - DOI - PubMed
Nair 2014
    1. Nair J, Lakshminrusimha S. Update on PPHN: mechanisms and treatment. Seminars in Perinatology 2014;38(2):78‐91. [DOI: 10.1053/j.semperi.2013.11.004; PUBMED: 24580763] - DOI - PMC - PubMed
Ohnishi 2016
    1. Ohnishi S, Ichiba H, Tanaka Y, Harada S, Matsumura H, Kan A, et al. Early and intensive nutritional strategy combining parenteral and enteral feeding promotes neurodevelopment and growth at 18 months of corrected age and 3 years of age in extremely low birth weight infants. Early Human Development 2016;100:35‐41. [DOI: 10.1016/j.earlhumdev.2016.03.014; PUBMED: 27391871] - DOI - PubMed
Patel 2017
    1. Patel P, Bhatia J. Total parenteral nutrition for the very low birth weight infant. Seminars in Fetal & Neonatal Medicine 2017;22(1):2‐7. [DOI: 10.1016/j.siny.2016.08.002; PUBMED: 27576106] - DOI - PubMed
Pierro 2002
    1. Pierro A. Metabolism and nutritional support in the surgical neonate. Journal of Pediatric Surgery 2002;37(6):811‐22. [PUBMED: 12037742] - PubMed
Pierro 2008
    1. Pierro A, Eaton S. Metabolism and nutrition in the surgical neonate. Seminars in Pediatric Surgery 2008;17(4):276‐84. [DOI: 10.1053/j.sempedsurg.2008.07.006; PUBMED: 19019296] - DOI - PubMed
Poindexter 2006
    1. Poindexter BB, Langer JC, Dusick AM, Ehrenkranz RA. Early provision of parenteral amino acids in extremely low birth weight infants: relation to growth and neurodevelopmental outcome. Journal of Pediatrics 2006;148(3):300‐5. [DOI: 10.1016/j.jpeds.2005.10.038; PUBMED: 16615955] - DOI - PubMed
Prasertsom 1996
    1. Prasertsom W, Phillipos EZ, Aerde JE, Robertson M. Pulmonary vascular resistance during lipid infusion in neonates. Archives of Disease in Childhood. Fetal and Neonatal Edition 1996;74(2):F95‐8. [DOI: 10.1136/fn.74.2.f95; PUBMED: 8777674] - DOI - PMC - PubMed
Qiao 2019
    1. Qiao LX, Wang J, Yan JH, Xu SX, Wang H, Zhu WY, et al. Follow‐up study of neurodevelopment in 2‐year‐old infants who had suffered from neonatal hypoglycemia. BMC Pediatrics 2019;19(1):133. [DOI: 10.1186/s12887-019-1509-4; PUBMED: 31023291] - DOI - PMC - PubMed
Repa 2016
    1. Repa A, Lochmann R, Unterasinger L, Weber M, Berger A, Haiden N. Aggressive nutrition in extremely low birth weight infants: impact on parenteral nutrition associated cholestasis and growth. PeerJ 2016;4:e2483. [DOI: 10.7717/peerj.2483; PUBMED: 27688976] - DOI - PMC - PubMed
RevMan 2014 [Computer program]
    1. Nordic Cochrane Centre, The Cochrane Collaboration. Review Manager 5 (RevMan 5). Version 5.3. Copenhagen: Nordic Cochrane Centre, The Cochrane Collaboration, 2014.
Ribed 2013
    1. Ribed SA, Romero Jimenez RM, Sanchez Gomez de Orgaz MC, Sanchez Luna M, Sanjurjo Saez M. Aggressive parenteral nutrition and growth velocity in preterm infants. Nutricion Hospitalaria 2013;28(6):2128‐34. [10.3305/nutr hosp.v28in06.6961; PUBMED: 24506392] - PubMed
Richardson 2001
    1. Richardson DK, Corcoran JD, Escobar GJ, Lee SK. SNAP‐II and SNAPPE‐II: simplified newborn illness severity and mortality risk scores. Journal of Pediatrics 2001;138(1):92‐100. [DOI: 10.1067/mpd.2001.109608; PUBMED: 11148519] - DOI - PubMed
Rigo 2013
    1. Rigo J, Senterre T. Intrauterine‐like growth rates can be achieved with premixed parenteral nutrition solution in preterm infants. Journal of Nutrition 2013;143(12 Suppl):2066S‐70S. [DOI: 10.3945/jn.113.177006; PUBMED: 24108133] - DOI - PubMed
Rintala 2014
    1. Rintala RJ, Pakarinen MP, Koivusalo AI. Neonatal surgery: towards evidence‐based practice and management. Seminars in Pediatric Surgery 2014;23(5):303‐8. [DOI: 10.1053/j.sempedsurg.2014.09.012; PUBMED: 25459016] - DOI - PubMed
Roelants 2016
    1. Roelants JA, Vlaardingerbroek H, Akker CH, Jonge RC, Goudoever JB, Vermeulen MJ. Two‐year follow‐up of a randomized controlled nutrition intervention trial in very low‐birth‐weight infants. Journal of Parenteral and Enteral Nutrition 2016; Vol. 42, issue 1:122‐31. [DOI: 10.1177/0148607116678196; PUBMED: 27875287] - DOI - PubMed
Sarnat 1976
    1. Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Archives of Neurology 1976;33(10):696‐705. [PUBMED: 987769] - PubMed
Schneider 2017
    1. Schneider N, Garcia‐Rodenas CL. Early nutritional interventions for brain and cognitive development in preterm infants: a review of the literature. Nutrients 2017;9(3):187. [DOI: 10.3390/nu9030187; PUBMED: 28241501] - DOI - PMC - PubMed
Schrag 2016
    1. Schrag SJ, Farley MM, Petit S, Reingold A, Weston EJ, Pondo T, et al. Epidemiology of invasive early‐onset neonatal sepsis, 2005 to 2014. Pediatrics 2016;138(6):e20162013. [DOI: 10.1542/peds.2016-2013; PUBMED: 27940705] - DOI - PubMed
Schünemann 2013
    1. Schünemann H, Brożek J, Guyatt G, Oxman A, editor(s). Handbook for grading the quality of evidence and the strength of recommendations using the GRADE approach (updated October 2013). GRADE Working Group, 2013. Available from gdt.gradepro.org/app/handbook/handbook.html.
Shah 2019
    1. Shah R, Harding J, Brown J, McKinlay C. Neonatal glycaemia and neurodevelopmental outcomes: a systematic review and meta‐analysis. Neonatology 2019; Vol. 115, issue 2:116‐26. [DOI: 10.1159/000492859; PUBMED: 30408811] - DOI - PubMed
Shane 2014
    1. Shane AL, Stoll BJ. Neonatal sepsis: progress towards improved outcomes. Journal of Infection 2014;68 (Suppl 1):S24‐32. [DOI: 10.1016/j.jinf.2013.09.011; PUBMED: 24140138] - DOI - PubMed
Simmer 2005
    1. Simmer K, Rao SC. Early introduction of lipids to parenterally‐fed preterm infants. Cochrane Database of Systematic Reviews 2005, Issue 2. [DOI: 10.1002/14651858.CD005256] - DOI - PubMed
Singhal 2016
    1. Singhal A. Optimizing early protein intake for long‐term health of preterm infants. Nestle Nutrition Institute Workshop Series 2016;86:129‐37. [DOI: 10.1159/000442735; PUBMED: 27336311] - DOI - PubMed
Srinivasan 2014
    1. Srinivasan V, Agus MS. Tight glucose control in critically ill children‐‐a systematic review and meta‐analysis. Pediatric Diabetes 2014;15(2):75‐83. [PUBMED: 24783254] - PubMed
Strobel 2015
    1. Strobel AM, Lu le N. The critically ill infant with congenital heart disease. Emergency Medicine Clinics of North America 2015;33(3):501‐18. [DOI: 10.1016/j.emc.2015.04.002; PUBMED: 26226862] - DOI - PubMed
Suchner 2001
    1. Suchner U, Katz DP, Furst P, Beck K, Felbinger TW, Senftleben U, et al. Effects of intravenous fat emulsions on lung function in patients with acute respiratory distress syndrome or sepsis. Critical Care Medicine 2001;29(8):1569‐74. [DOI: 10.1097/00003246-200108000-00012; PUBMED: 11505129] - DOI - PubMed
Tagare 2013
    1. Tagare A, Walawalkar M, Vaidya U. Aggressive parenteral nutrition in sick very low birth weight babies: a randomized controlled trial. Indian Pediatrics 2013;50(10):954‐6. [PUBMED: 23798635] - PubMed
Tan 2017
    1. Tan JK, Minutillo C, McMichael J, Rao S. Impact of hypoglycaemia on neurodevelopmental outcomes in hypoxic ischaemic encephalopathy: a retrospective cohort study. BMJ Paediatrics Open 2017;1(1):e000175. [DOI: 10.1136/bmjpo-2017-000175; PUBMED: 29637170] - DOI - PMC - PubMed
Thompson 1997
    1. Thompson CM, Puterman AS, Linley LL, Hann FM, Elst CW, Molteno CD, et al. The value of a scoring system for hypoxic ischaemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatrica 1997;86(7):757‐61. [PUBMED: 9240886] - PubMed
Torer 2015
    1. Torer B, Hanta D, Ozdemir Z, Cetinkaya B, Gulcan H. An aggressive parenteral nutrition protocol improves growth in preterm infants. Turkish Journal of Pediatrics 2015;57(3):236‐41. [PUBMED: 26701941] - PubMed
Trivedi 2013
    1. Trivedi A, Sinn JK. Early versus late administration of amino acids in preterm infants receiving parenteral nutrition. Cochrane Database of Systematic Reviews 2013, Issue 7. [DOI: 10.1002/14651858.CD008771.pub2] - DOI - PubMed
Umar 2011
    1. Umar S, Nadadur RD, Li J, Maltese F, Partownavid P, Laarse A, et al. Intralipid prevents and rescues fatal pulmonary arterial hypertension and right ventricular failure in rats. Hypertension 2011;58(3):512‐8. [DOI: 10.1161/HYPERTENSIONAHA.110.168781; PUBMED: 21747043] - DOI - PMC - PubMed
Uthaya 2016
    1. Uthaya S, Liu X, Babalis D, Dore C, Warwick J, Bell J, et al. Efficacy and mechanism avaluation. Nutritional Evaluation and Optimisation in Neonates (NEON) Trial of Amino Acid Regimen and Intravenous Lipid Composition in Preterm Parenteral Nutrition: A Randomised Double‐blind Controlled Trial. Southampton (UK): NIHR Journals Library, 2016. [PUBMED: 27030860] - PubMed
van Goudoever 2018
    1. Goudoever JB, Carnielli V, Darmaun D, Sainz de Pipaon M. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: amino acids. Clinical Nutrition 2018;37(6 Pt B):2315‐23. [DOI: 10.1016/j.clnu.2018.06.945; PUBMED: 30100107] - DOI - PubMed
Venus 1989
    1. Venus B, Smith RA, Patel C, Sandoval E. Hemodynamic and gas exchange alterations during Intralipid infusion in patients with adult respiratory distress syndrome. Chest 1989;95(6):1278‐81. [DOI: 10.1378/chest.95.6.1278; PUBMED: 2721266] - DOI - PubMed
Vlasselaers 2009
    1. Vlasselaers D, Milants I, Desmet L, Wouters PJ, Vanhorebeek I, Heuvel I, et al. Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study. The Lancet 2009;373(9663):547‐56. [DOI: 10.1016/S0140-6736(09)60044-1; PUBMED: 19176240] - DOI - PubMed
Wan 2014
    1. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Medical Research Methodology 2014;14:135. [DOI: 10.1186/1471-2288-14-135; PUBMED: 25524443] - DOI - PMC - PubMed
Wickstrom 2018
    1. Wickstrom R, Skiold B, Petersson G, Stephansson O, Altman M. Moderate neonatal hypoglycemia and adverse neurological development at 2‐6 years of age. European Journal of Epidemiology 2018;33(10):1011‐20. [DOI: 10.1007/s10654-018-0425-5; PUBMED: 30030683] - DOI - PMC - PubMed
Wilkins 2004
    1. Wilkins CE, Emmerson AJ. Extravasation injuries on regional neonatal units. Archives of Disease in Childhood. Fetal and Neonatal Edition 2004;89(3):F274‐5. [DOI: 10.1136/adc.2003.028241; PUBMED: 15102736] - DOI - PMC - PubMed
Yang 2016
    1. Yang J, Chang SS, Poon WB. Relationship between amino acid and energy intake and long‐term growth and neurodevelopmental outcomes in very low birth weight infants. Journal of Parenteral and Enteral Nutrition 2016;40(6):820‐6. [DOI: 10.1177/0148607115572833; PUBMED: 25690346] - DOI - PubMed
Zhao 2018
    1. Zhao Y, Wu Y, Xiang B. Tight glycemic control in critically ill pediatric patients: a meta‐analysis and systematic review of randomized controlled trials. Pediatric Research 2018;84(1):22‐7. [DOI: 10.1038/s41390-018-0002-3; PUBMED: 29795449] - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources