Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 24:13:889-896.
doi: 10.2147/DMSO.S240122. eCollection 2020.

The Effects of 24-Week, High-Concentration Hydrogen-Rich Water on Body Composition, Blood Lipid Profiles and Inflammation Biomarkers in Men and Women with Metabolic Syndrome: A Randomized Controlled Trial

Affiliations

The Effects of 24-Week, High-Concentration Hydrogen-Rich Water on Body Composition, Blood Lipid Profiles and Inflammation Biomarkers in Men and Women with Metabolic Syndrome: A Randomized Controlled Trial

Tyler W LeBaron et al. Diabetes Metab Syndr Obes. .

Abstract

Purpose: Metabolic syndrome is associated with several medical risk factors including dyslipidemia, hyperglycemia, and obesity, which has become a worldwide pandemic. The sequelae of this condition increase the risk of cardiovascular and neurological disease and increased mortality. Its pathophysiology is associated with redox dysregulation, excessive inflammation, and perturbation of cellular homeostasis. Molecular hydrogen (H2) may attenuate oxidative stress, improve cellular function, and reduce chronic inflammation. Pre-clinical and clinical studies have shown promising effects of H2-rich water (HRW) on specific features of metabolic syndrome, yet the effects of long-term, high-concentration HRW in this prevalent condition remain poorly addressed.

Methods: We conducted a randomized, double-blinded, placebo-controlled trial in 60 subjects (30 men and 30 women) with metabolic syndrome. An initial observation period of one week was used to acquire baseline clinical data followed by randomization to either placebo or high-concentration HRW (> 5.5 millimoles of H2 per day) for 24 weeks.

Results: Supplementation with high-concentration HRW significantly reduced blood cholesterol and glucose levels, attenuated serum hemoglobin A1c, and improved biomarkers of inflammation and redox homeostasis as compared to placebo (P < 0.05). Furthermore, H2 tended to promote a mild reduction in body mass index and waist-to-hip ratio.

Conclusion: Our results give further credence that high-concentration HRW might have promising effects as a therapeutic modality for attenuating risk factors of metabolic syndrome.

Keywords: cholesterol; fasting blood glucose; hydrogen water; inflammation; metabolism; oxidative stress.

PubMed Disclaimer

Conflict of interest statement

TWL reports personal fees from medical/academic conferencesincluding travel reimbursement, honoraria, and speaking and consultancy fees from various academic and commercial entities regarding molecular hydrogen. All other authors report no conflict of interest.

References

    1. O’neill S, O’driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16(1):1–12. doi:10.1111/obr.12229 - DOI - PubMed
    1. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–867. doi:10.1038/nature05485 - DOI - PubMed
    1. Pitsavos C, Panagiotakos D, Weinem M, Stefanadis C. Diet, exercise and the metabolic syndrome. Rev Diabet Stud. 2006;3(3):118–126. doi:10.1900/RDS.2006.3.118 - DOI - PMC - PubMed
    1. Chaves H, Pella D, Singh R, et al. The challenges of prevention of cardiovascular diseases. A Scientific Statement of the International College of Cardiology World Heart J. 2016;8:282–288.
    1. LeBaron TW, Kura B, Kalocayova B, Tribulova N, Slezak J. A new approach for the prevention and treatment of cardiovascular disorders. molecular hydrogen significantly reduces the effects of oxidative stress. Molecules. 2019;24(11). doi:10.3390/molecules24112076 - DOI - PMC - PubMed